

GCSE · Edexcel · Maths

3 hours

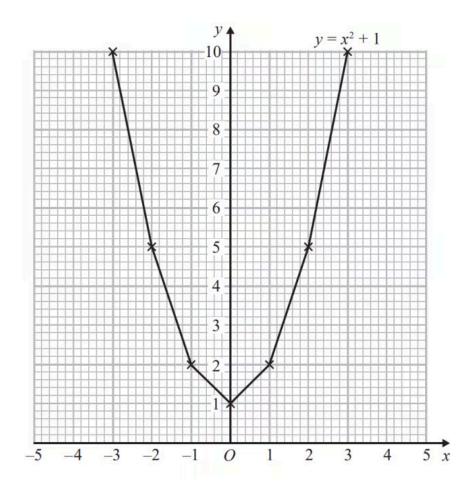
Exam Questions

Graphs of Functions

Types of Graphs / Quadratic Graphs / Drawing Graphs from Tables / Solving Equations Using Graphs / Trigonometric Graphs / Solving Trig Equations

Total Marks	/208
Hard (21 questions)	/98
Medium (16 questions)	/61
Easy (18 questions)	/49

Scan here to return to the course or visit savemyexams.com

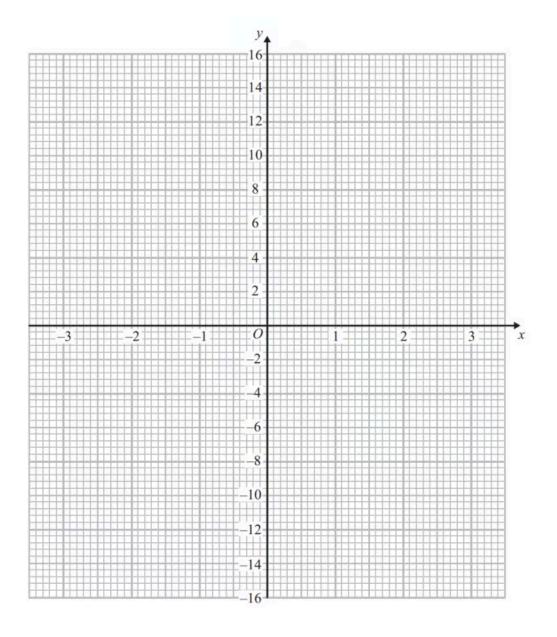


Easy Questions

1 Brogan needs to draw the graph of $y = x^2 + 1$

Here is her graph.

Write down one thing that is wrong with Brogan's graph.

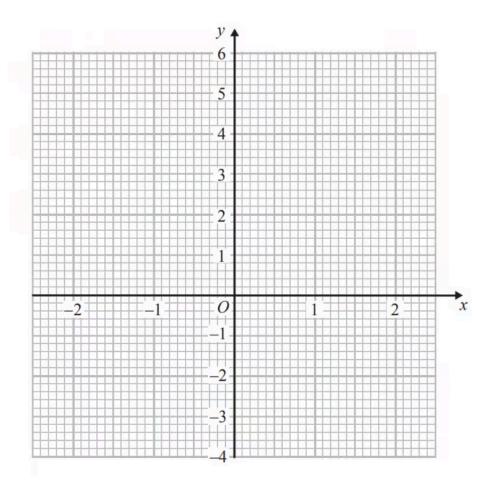

(1 mark)

2 (a) Complete the table of values for $y = x^3 - 4x$

X	-3	-2	-1	0	1	2	3
У			3	0			15

(2 marks)

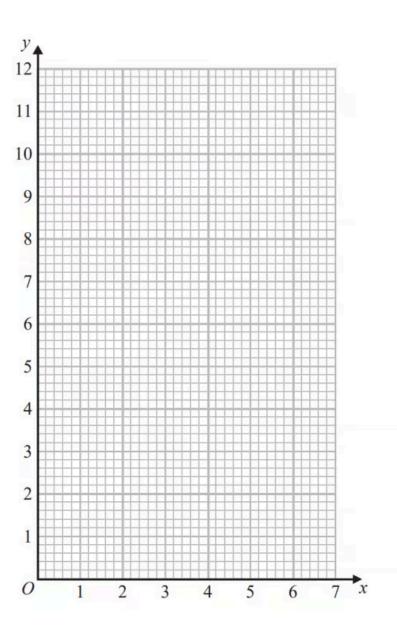
(b) On the grid, draw the graph of $y = x^3 - 4x$ from x = -3 to x = 3



3 (a) Complete the table of values for $y = x^3 - 3x + 1$

X	-2	-1	0	1	2
У		3			3

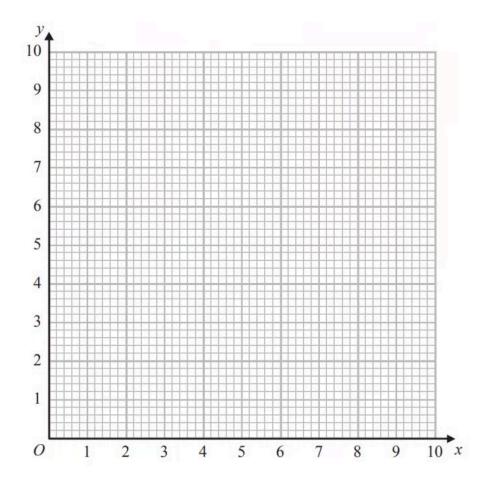
(2 marks)


(b) On the grid, draw the graph of $y = x^3 - 3x + 1$ for values of x from -2 to 2

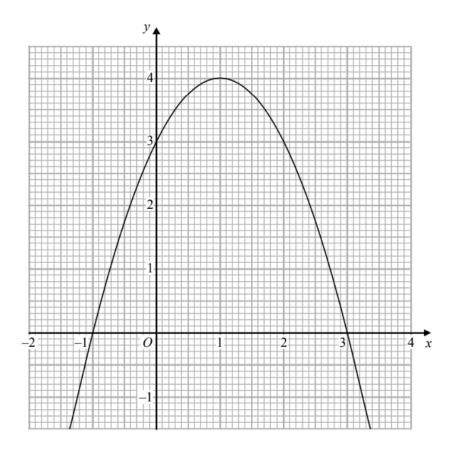
4 (a) Complete the table of values for $y = \frac{6}{x}$

X	0.5	1	2	3	4	5	6
У		6	3		1.5		1

(b)


On the grid, draw the graph of
$$y = \frac{6}{x}$$
 for $0.5 \le x \le 6$

5 (a) Complete the table of values for $y = \frac{4}{x}$


X	0.5	1	2	4	5	8
у		4	2			

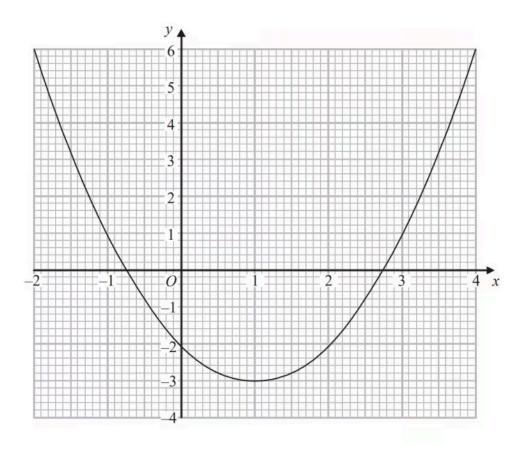
(2 marks)

(b) On the grid, draw the graph of $y = \frac{4}{x}$ for $0.5 \le x \le 8$

6 (a) The graph of y = f(x) is drawn on the grid.

Write down the coordinates of the turning point of the graph.

(1 mark)


(b) Write down the roots of f(x) = 2

(1 mark)

(c) Write down the value of f(0.5)

(1 mark)

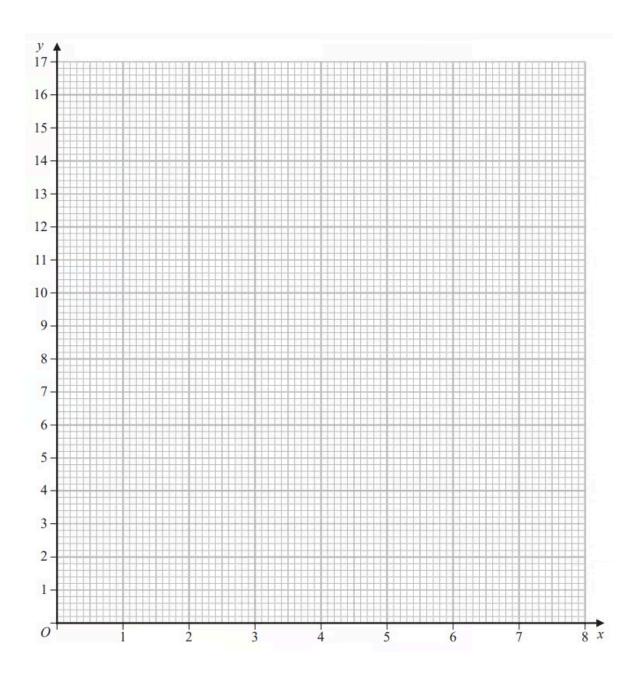
7 (a) The graph of y = f(x) is drawn on the grid.

Write down the coordinates of the turning point of the graph.

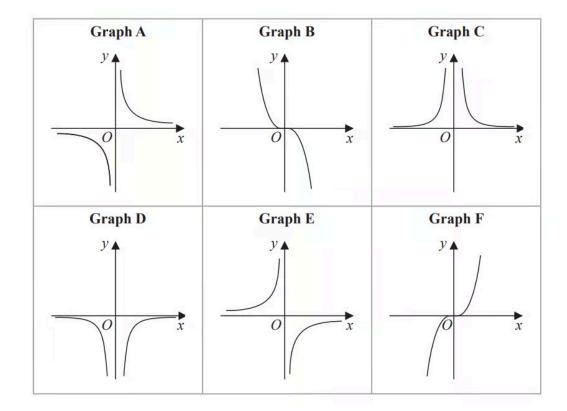
(1 mark)

(b) Write down estimates for the roots of f(x) = 0

(1 mark)


(c) Use the graph to find an estimate for f(1.5)

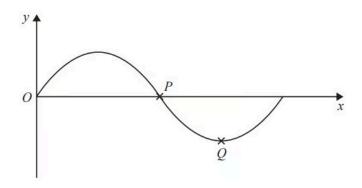
(1 mark)


8 (a) Complete the table of values for $y = \frac{1}{x}(x^2 + 4)$

X	0.25	0.5	1	2	4	8
У	16.25					8.5

(b) On the grid, draw the graph of $y = \frac{1}{x}(x^2 + 4)$ for $0.25 \le x \le 8$

9 Here are six graphs.



Complete the table below with the letter of the graph that could represent each given equation.

Write your answers on the dotted lines.

Equation	Graph
$y = \frac{2}{x^2}$	
$y = -\frac{1}{2}x^3$	
$y = -\frac{5}{x}$	

10 (a) The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$

Write down the coordinates of

i) the point P

[1]

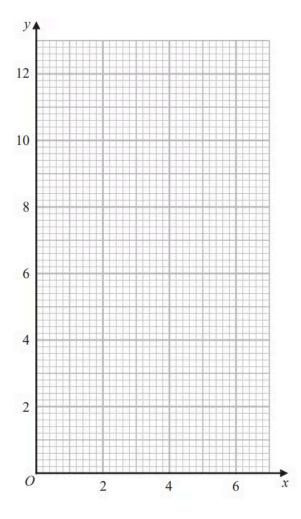
ii) the point Q

[1]

(2 marks)

(b) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$

Show the coordinates of any points of intersection with the coordinate axes.



11 (a) Complete the table of values for $y = \frac{6}{x}$

X	0.5	1	2	3	4	5	6
y		6		2			1

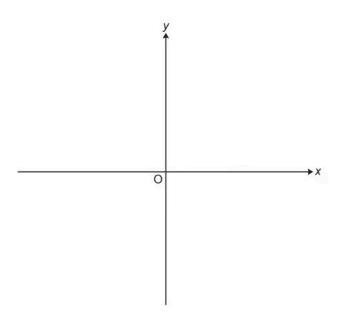
(2 marks)

(b) On the grid, draw the graph of $y = \frac{6}{x}$ for $0.5 \le x \le 6$

- **12** Choose the point that is on the graph of $y = \frac{1}{x}$
 - **A.** (-1, 1)
 - **B.** (0.3, 3)
 - **C.** (0.8, 0.2)
 - **D.** (2.5, 0.4)

(1 mark)

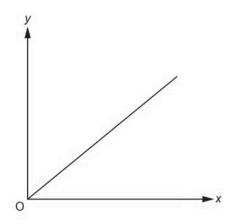
13 The equation of a curve is $y = (x - 1)^2 - 6$


Choose the coordinates of the turning point.

- **A.** (-1, -6)
- **B.** (1, 6)
- **C.** (-1, 6)
- **D.** (1, -6)

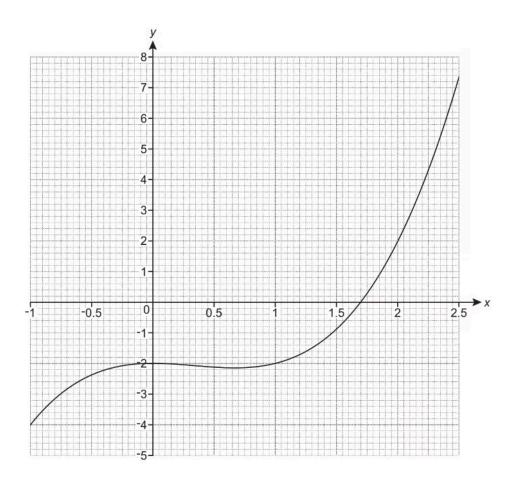
(1 mark)

14 Sketch the graph of $y = 3^x$


Give the value of the y-intercept.

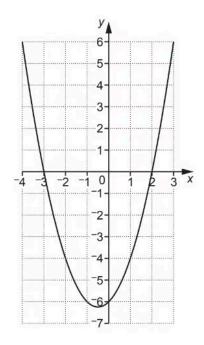
(2 marks)

15 Shirley is asked to sketch a graph of $y = 5^x$ for x > 0


She produces the following.

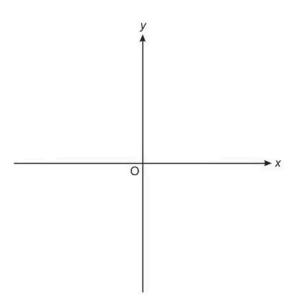
The graph has two errors.

How should they be corrected?


16 The graph of $y = x^3 - x^2 - 2$ is drawn on the grid.

Use the graph to solve $x^3 - x^2 - 2 = 0$. Give your answer correct to 1 decimal place.

(1 mark)


17 Here is the graph of $y = x^2 + x - 6$.

Use the graph to solve the equation $x^2 + x - 6 = 0$.

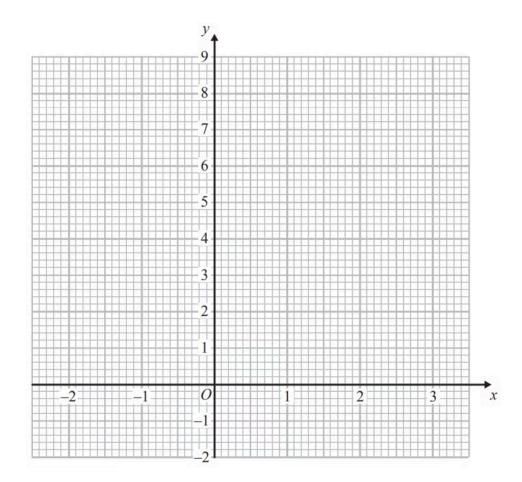

$$x =$$
 or $x =$

18 i) Sketch a graph on the axes that shows that y is directly proportional to x.

[2]

ii) Sketch a graph on the axes that shows $y = x^3$

[2]

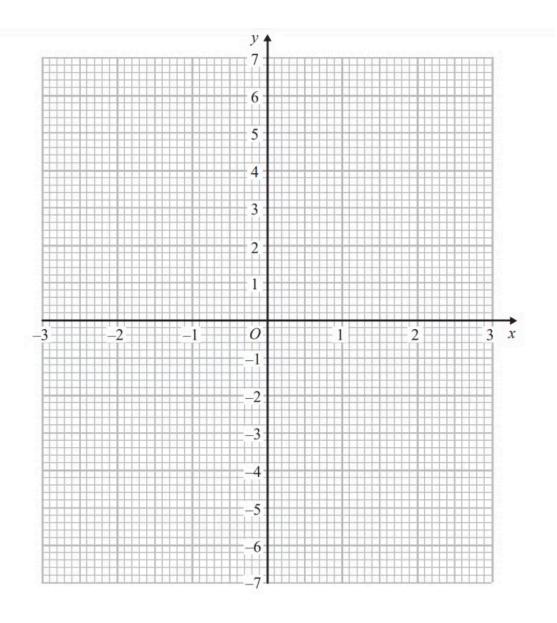

Medium Questions

1 (a) Complete the table of values for $y = 2^x$

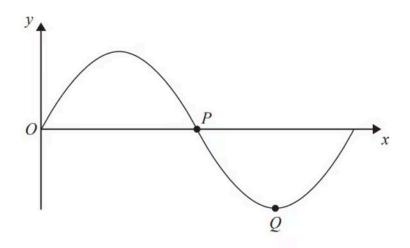
X	-2	-1	0	1	2	3
y	0.25			2		

(2 marks)

(b) On the grid, draw the graph of $y = 2^x$ for values of x from -2 to 3



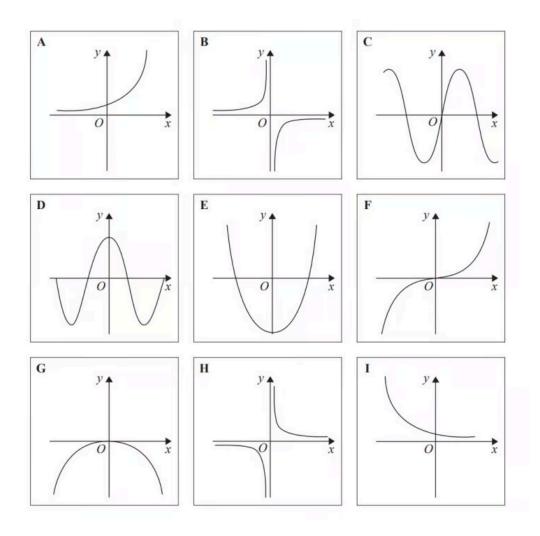
2 (a) Complete the table of values for $y = x^2 - x - 6$


X	-3	-2	-1	0	1	2	3
y	6			-6			

(2 marks)

(b) On the grid, draw the graph of $y = x^2 - x - 6$ for values of x from -3 to 3

(c) Use your graph to find estimates of the solutions to the equation $x^2 - x - 6 = -2$ (2 marks) **3 (a)** The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$.


Write down the coordinates of the point P.

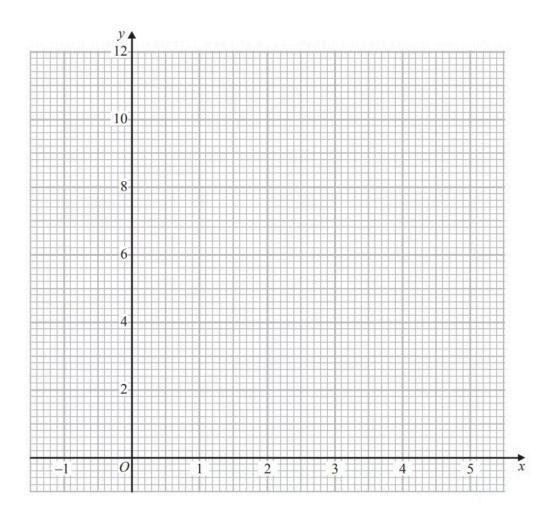
(1 mark)

(b) Write down the coordinates of the point \it{Q} .

(1 mark)

4 Here are some graphs.

In the table below, match each equation with the letter of its graph.


Equation	Graph
$y = \sin x$	
$y = x^3 + 4x$	
$y = 2^x$	
$y = \frac{4}{x}$	

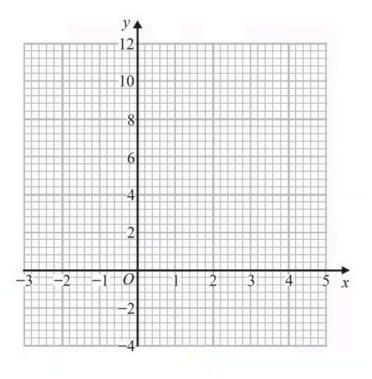
(3 marks)

5 (a) Complete the table of values for $y = x^2 - 3x + 2$

X	-1	0	1	2	3	4	5
У	6				2		12

(b) On the grid, draw the graph of $y = x^2 - 3x + 2$ for values of x from -1 to 5

(2 marks)

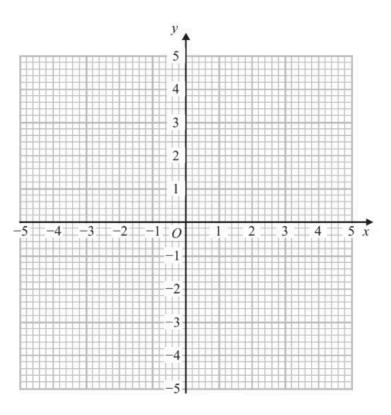

(c) Find estimates for the solutions of the equation $x^2 - 3x + 2 = 4$

6 (a) Complete the table of values for $y = x^2 - 3x + 1$

X	-2	-1	0	1	2	3	4
у	11		1	-1		1	

(2 marks)

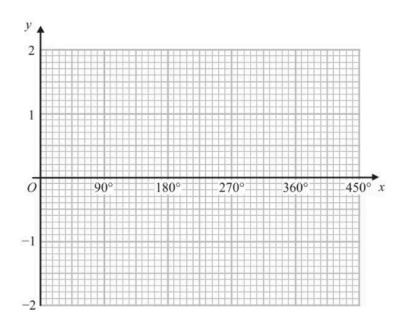
(b) On the grid, draw the graph of $y = x^2 - 3x + 1$ for values of x from -2 to 4



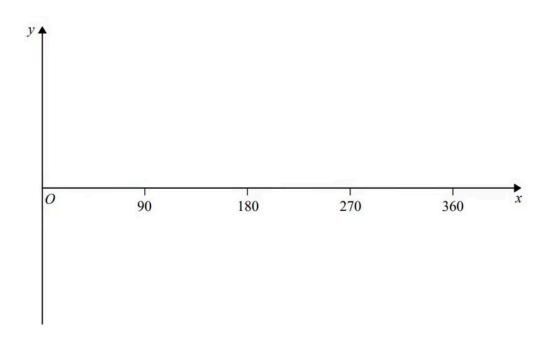
(2 marks)

(c) By drawing a suitable straight line on the grid, find estimates for the solutions of

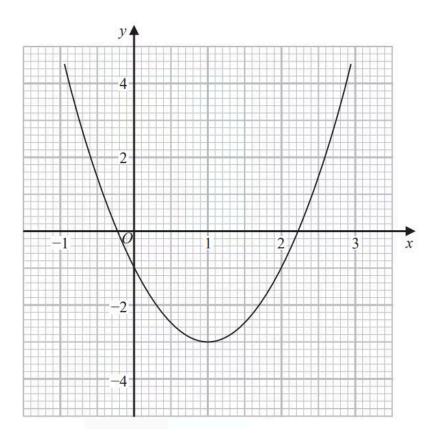
$$x^2 - 3x + 1 = 3$$


7 (a)

On the grid, draw the graph of $x^2 + y^2 = 4$


(2 marks)

(b)



On the grid, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$

8 Sketch the graph of $y = \cos x^{\circ}$ for $0 \le x \le 360$

9 (a) Part of the graph of $y = 2x^2 - 4x - 1$ is shown on the grid.

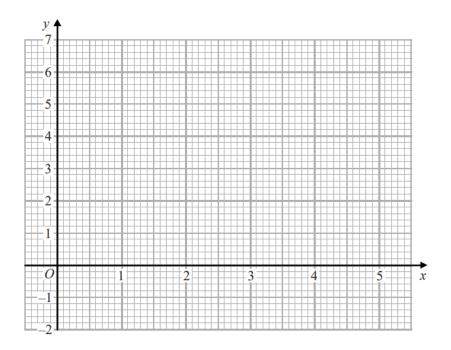
Use the graph to find estimates for the solutions of the equation $2x^2-4x-1=0$ Give your solutions correct to one decimal place.

(2 marks)

(b) By drawing a suitable straight line on the grid, find estimates for the solutions of the equation $x^2 - x - 1 = 0$

Show your working clearly.

Give your solutions correct to one decimal place.

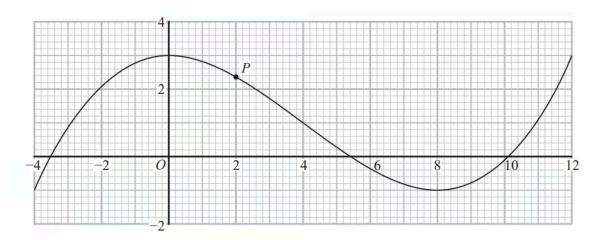

(3 marks)

10 (a) Complete the table of values for $y = x^2 - 5x + 6$

X	0	1	2	3	4	5
У	6		0	0	2	

(1 mark)

(b) On the grid, draw the graph of $y = x^2 - 5x + 6$ for $0 \le x \le 5$


(2 marks)

(c) By drawing a suitable straight line on the grid, find estimates for the solutions of the equation

$$x^2 - 5x = x - 7$$

(3 marks)

11 The diagram shows the graph of y = f(x) for $-4 \le x \le 12$

Note: Point P in the graph is from the previous question. It is not required for this question.

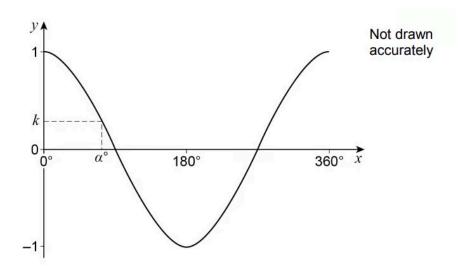
The equation f(x) = k has exactly two different solutions for $-4 \le x \le 12$ Use the graph to find the two possible values of k.

(2 marks)

12 (a) Write $3x^2 - 12x + 7$ in the form $a(x + b)^2 + c$

(3 marks)

(b) The line **L** is the line of symmetry of the curve with equation $y = 3x^2 - 12x + 7$ Using your answer to part (a) or otherwise, write down an equation of ${f L}$.


(1 mark)

13 Choose the point that lies on the curve $y = x^2 - 4x + 1$

- **A.** (-1, 4)
- **B.** (-1, -4)
- **C.** (-1, -2)
- **D.** (-1, 6)

(1 mark)

14 (a) Here is a sketch of $y = \cos x$ for values of x from 0° to 360°

 α° is an acute angle. $\cos \alpha^{\circ} = k$

Choose the value of $\cos{(180^{\circ}-\alpha^{\circ})}$

- **A.** 1 k
- **B.** *k*
- $\mathbf{C}.-k$
- **D.** -1 k

(1 mark)

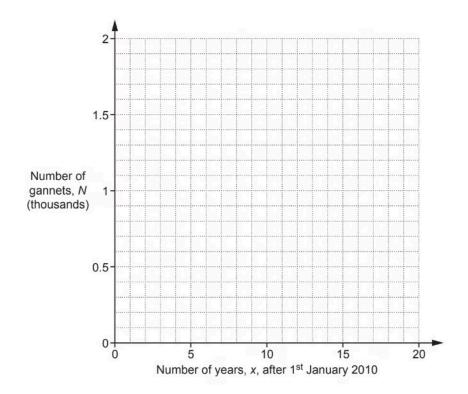
(b) Circle the value of $\cos (360^{\circ} + \alpha^{\circ})$

k – 1	k + 1	-k	k

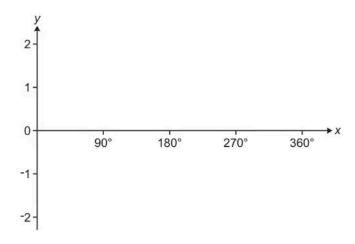
(1 mark)

15 (a) The number of gannets on an island is assumed to follow this exponential growth model.

$$N = 0.45 \times 1.07^{X}$$

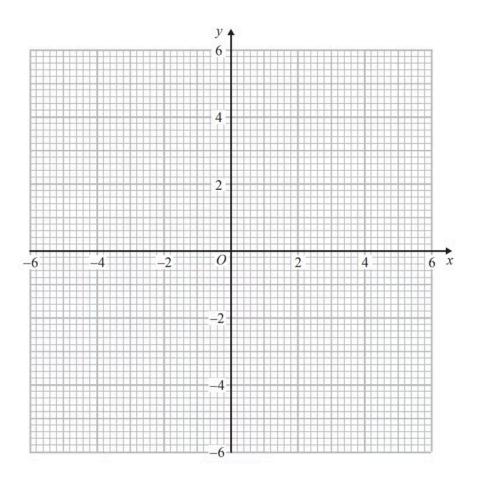

N is the number of gannets, in thousands. *x* is the number of years after 1st January 2010.

Complete the table for $N = 0.45 \times 1.07^{X}$.


Х	0	5	10	15	20
N	0.45	0.63		1.24	

(2 marks)

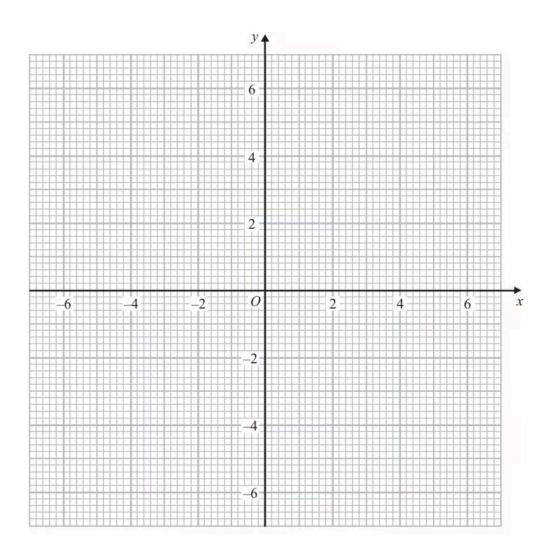
(b) Draw the graph of $N = 0.45 \times 1.07^x$



- (c) Use the graph to find **the year** when the gannet population is predicted to reach 1000. (2 marks)
- **16** Sketch the graph of $y = \sin x$ for $0^{\circ} < x < 360^{\circ}$

Hard Questions

1 (a) On the grid, construct the graph of $x^2 + y^2 = 16$



(2 marks)

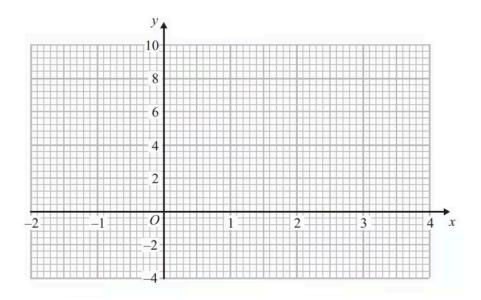
(b) Find estimates for the solutions of the simultaneous equations

$$x^2 + y^2 = 16$$
$$y = 2x + 1$$

2 (a) On the grid, draw the graph of $x^2 + y^2 = 12.25$

(2 marks)

(b) Hence find estimates for the solutions of the simultaneous equations


$$x^2 + y^2 = 12.25$$
$$2x + y = 1$$

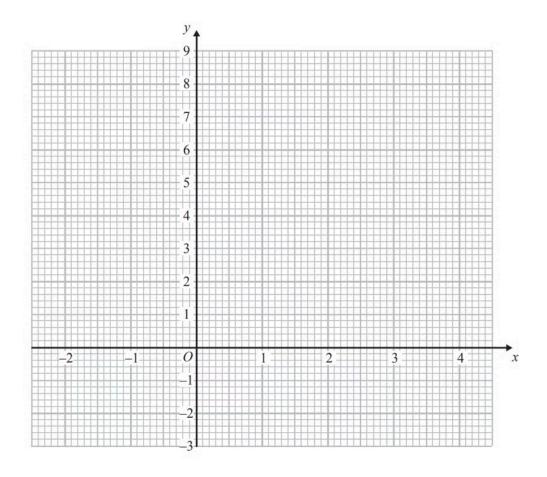
3 (a) Complete the table of values for $y = x^2 - 2x$

X	-2	-1	0	1	2	3	4
У		3	0			3	

(2 marks)

(b) On the grid, draw the graph of $y = x^2 - 2x$ for values of x from -2 to 4

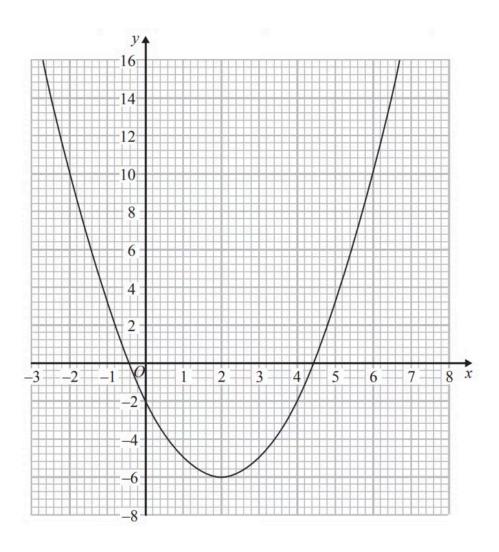
(2 marks)


(c) Solve $x^2 - 2x - 2 = 1$

4 (a) Complete the table of values for $y = x^2 - 2x - 1$

X	-2	-1	0	1	2	3	4
У	7			-2	-1		

(2 marks)


(b) On the grid, draw the graph of $y = x^2 - 2x - 1$ for values of x from -2 to 4

(c) Solve
$$x^2 - 2x - 1 = x + 3$$

5 (a) The diagram shows the graph of $y = x^2 - 4x - 2$

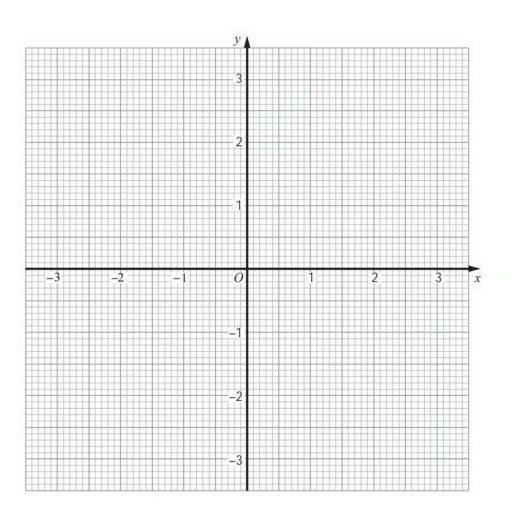
Use the graph to find estimates for the solutions of

i)
$$x^2 - 4x - 2 = 0$$

[1]

ii)
$$x^2 - 4x - 6 = 0$$

[2]

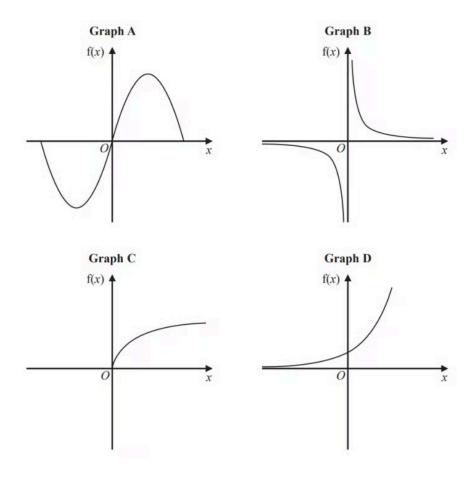

(3 marks)

(b) Use the graph to find estimates for the values of x that satisfy the simultaneous equations

$$y = x^2 - 4x - 2$$

$$x + y = 6$$

6 (a) Construct the graph of $x^2 + y^2 = 9$

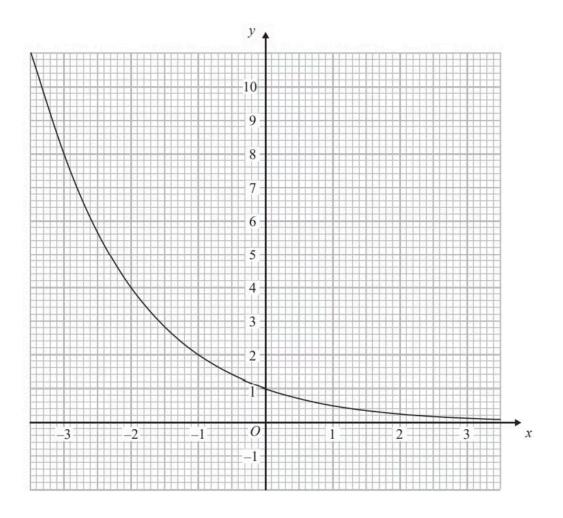


(2 marks)

(b) By drawing the line x + y = 1 on the grid, solve the equations

$$x^2 + y^2 = 9$$
$$x + y = 1$$

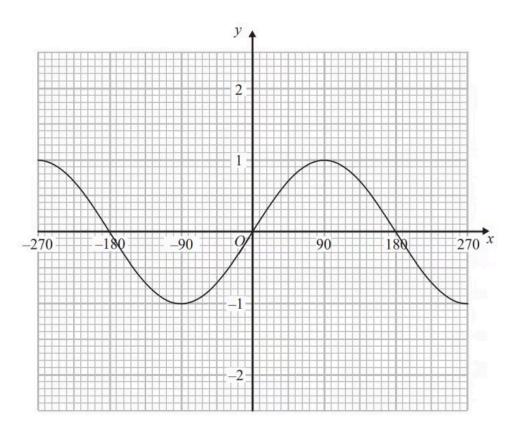
7 Here are four graphs.



The graphs represent four different types of function f.

Match each description of the function in the table to the letter of its graph.

Description of function	Graph
f(x) is inversely proportional to x	
f(x) is a trigonometrical function	
f(x) is an exponential function	
$f(x)$ is directly proportional to \sqrt{x}	


8 (a)

The graph of $y = k^x$, where k is a positive constant, is shown above.

Find the value of k.

(b)

The graph of $y = \sin x^{\circ}$ for values of x from -270 to +270 is shown above.

On the same axes, draw the graph of $y = 1 - \sin x^{\circ}$ for values of x from -270 to +270

9 (a) The curve C has equation y = f(x) where $f(x) = 9 - 3(x + 2)^2$

The point A is the maximum point on \mathbf{C} .

Write down the coordinates of A.

(1 mark)

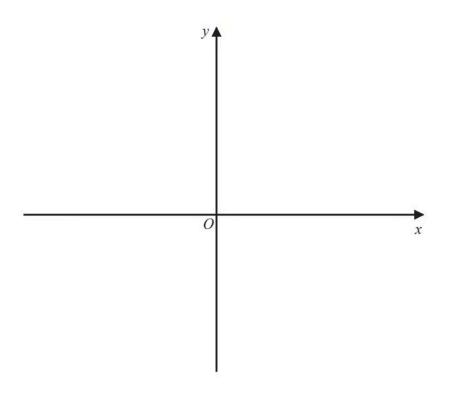
(b) The curve **C** is transformed to the curve **S** by a translation of $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$

Find an equation for the curve \mathbf{S} .

(1 mark)

(c) The curve \mathbf{C} is transformed to the curve \mathbf{T} . The curve \mathbf{T} has equation $y = 3(x + 2)^2 - 9$

Describe fully the transformation that maps curve $\bf C$ onto curve $\bf T$.


(1 mark)

10 The curve C has equation $y = 4(x - 1)^2 - a$ where a > 4

Using the axes below, sketch the curve C. On your sketch show clearly, in terms of a,

i) the coordinates of any points of intersection of $oldsymbol{C}$ with the coordinate axes,

ii) the coordinates of the turning point.

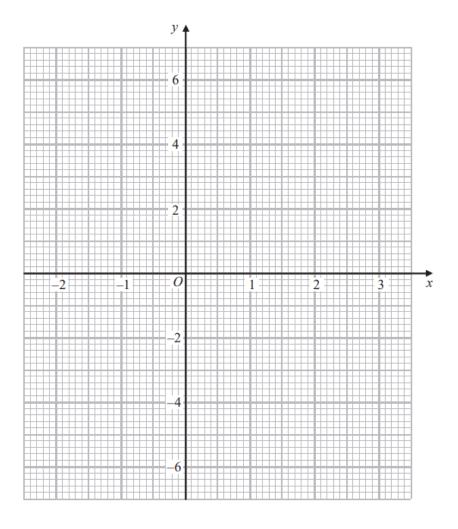
(4 marks)

11 (a) Express $7 + 12x - 3x^2$ in the form $a + b(x + c)^2$ where a, b and c are integers.

(3 marks)

(b) C is the curve with equation $y = 7 + 12x - 3x^2$ The point A is the maximum point on ${f C}$

Use your answer to part (a) to write down the coordinates of \boldsymbol{A}


(1 mark)

12 (a) Complete the table of values for $y = x^3 - 2x^2 - 3x + 4$

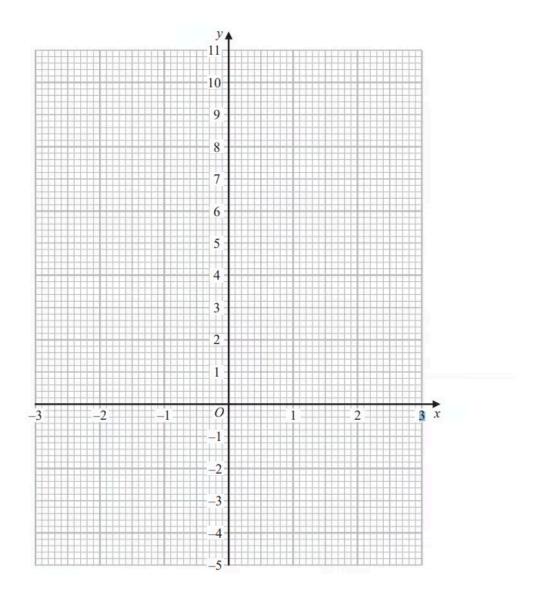
X	-2	-1	-0.5	0	1	1.5	2	3
У			4.875	4		-1.625		

(2 marks)

(b) On the grid, draw the graph of $y = x^3 - 2x^2 - 3x + 4$ for values of x from -2 to 3

(c)	By drawing a suitable straight line on the grid, find estimates for the solutions of the
	equation $x^3 - 2x^2 - x + 1 = 0$

Give your solutions correct to 1 decimal place.


(4 marks)

13 (a) Complete the table of values for $y = \frac{1}{2} x^3 - 2x + 3$

X	-3	-2	-1	0	1	2	3
У	-4.5			3		3	

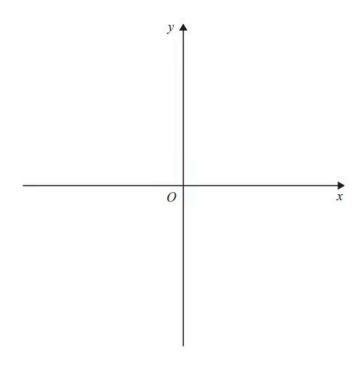
(2 marks)

(b) On the grid, draw the graph of $y = \frac{1}{2} x^3 - 2x + 3$ for $-3 \le x \le 3$

(c) By drawing a suitable straight line on the grid, find an estimate for the solution of the equation $\frac{1}{2}x^3 - x + 4 = 0$

14 The curve **C** has equation $y = 3 - 5(x + 1)^2$ The point A is the maximum point on \mathbf{C} .

Write down the coordinates of A.


(1 mark)

15 The curve *C* has equation $y = x^2 - 6x + 4$

Using the axes below, sketch the curve C. On your sketch show clearly

i) the exact coordinates of any points of intersection of C with the coordinate axes,

ii) the coordinates of the turning point.

(6 marks)

16 y is an obtuse angle.

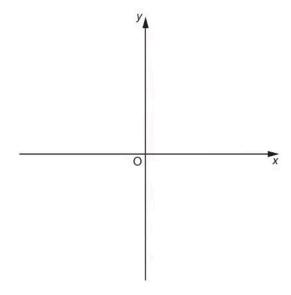
Which statement is true? Tick **one** box.

$\sin y > 0$ and $\cos y > 0$
$\sin y > 0$ and $\cos y < 0$
$\sin y < 0$ and $\cos y > 0$
$\sin y < 0$ and $\cos y < 0$

(1 mark)

17
$$f(x) = \sin(x - 90^{\circ})$$

Choose the value of $f(0^{\circ})$

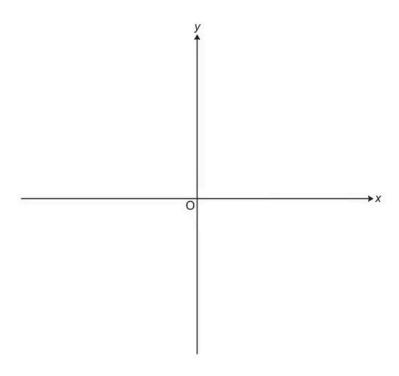

- **A.** 1
- **B.** 0
- **c.** $-\frac{1}{2}$
- **D.** -1

(1 mark)

18 (a) Write
$$x^2 + 4x - 16$$
 in the form $(x + a)^2 - b$.

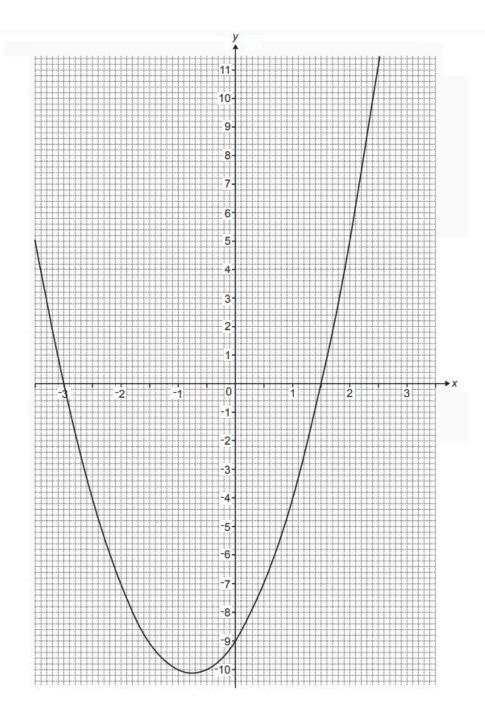
(3 marks)

(b) Sketch the graph of $y = x^2 + 4x - 16$, showing clearly the coordinates of any turning points.



19 (a) Write $x^2 - 10x + 22$ in the form $(x - a)^2 - b$.

(3 marks)


(b) Sketch the graph of $y = x^2 - 10x + 22$.

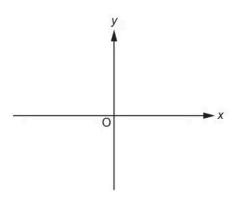
Show clearly the coordinates of any turning points and the value of the y-intercept.

(4 marks)

20 (a) The graph of $y = 2x^2 + 3x - 9$ is drawn below.

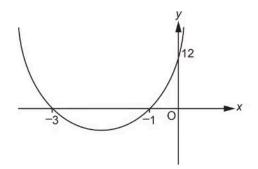
Use the graph to solve $2x^2 + 3x - 9 = 0$.

X	=	 	 	 or
V	=			


- **(b)** The equation $2x^2 + x 4 = 0$ can be solved by finding the intersection of the graph of y = 0 $2x^{2} + 3x - 9$ and the line y = ax + b.
 - i) Find the value of a and the value of b.

$$a = \dots$$
 $b = \dots$ [2]

ii) Hence use the graph to solve the equation $2x^2 + x - 4 = 0$.


$$x =$$
 or $x =$ [3]

21 (a) Sketch the graph of $y = (x-2)^2 - 3$. Show the coordinates of any turning points.

(3 marks)

(b) The sketch shows part of a graph which has equation $y = ax^2 + bx + c$.

Not to scale

Find the values of a, b and c.

$$a = \dots$$

$$c = \dots (5 \text{ marks})$$