

 $\textbf{IGCSE} \cdot \textbf{Cambridge} \, (\textbf{CIE}) \cdot \textbf{Maths}$

Q 2 hours **Q** 52 questions

Exam Questions

Surds

Simplifying Surds / Rationalising Denominators

Total Marks	/148
Very Hard (15 questions)	/50
Hard (17 questions)	/51
Medium (20 questions)	/47

Scan here to return to the course or visit savemyexams.com

Medium Questions

1 Simplify

$$\sqrt{32} + \sqrt{98}$$

(2 marks)

2 (a) Rationalise the denominator of $\frac{12}{\sqrt{3}}$.

(2 marks)

(b) Work out the value of $(\sqrt{2} + \sqrt{8})^2$.

(2 marks)

3 Work out the value of $(\sqrt{12} - \sqrt{3})^2$.

(2 marks)

4 Rationalise the denominator of $\frac{10}{\sqrt{5}}$. Give your answer in its simplest form.

5 Show that
$$\frac{\sqrt{12}}{\sqrt{3+2}}$$

can be written in the form $a\sqrt{b}$ where a is a simplified fraction and b is an integer.

(2 marks)

6 Show that
$$(6 + 2\sqrt{12})^2 = 12(7 + 4\sqrt{3})$$

Show each stage of your working.

(3 marks)

7 Show that
$$\frac{\sqrt{20} + \sqrt{80}}{\sqrt{3}}$$
 can be expressed in the form \sqrt{a} where a is an integer.

Show your working clearly.

(3 marks)

8 Show that
$$\sqrt{45} + \sqrt{20} = 5\sqrt{5}$$

Show your working clearly.

9 Rationalise the denominator of $\frac{10}{\sqrt{6}}$

Give your answer in its simplest form

(2 marks)

10 Show that $\sqrt{20} = 2\sqrt{5}$.

(2 marks)

11 Write $(1 + \sqrt{3})^2$ in the form $a + b\sqrt{3}$.

(3 marks)

12 Simplify $\sqrt{6} \times \sqrt{3}$.

(2 marks)

13 Simplify fully by rationalising the denominator.

$$\frac{20}{\sqrt{5}}$$

14 Simplify fully.

$$\sqrt{200}$$

(2 marks)

15 Write
$$\sqrt{12} + \sqrt{75}$$
 in the form $k\sqrt{3}$.

(3 marks)

16 Simplify fully.

$$\sqrt{50} + \sqrt{2}$$

(2 marks)

17 Work out
$$2\sqrt{10} \times \sqrt{80} \times \sqrt{18}$$

Give your answer as an integer.

(3 marks)

18 Rationalise the denominator and simplify
$$\frac{10}{3\sqrt{5}}$$

19 $8300 = 100 \times 83$

Select the number that is closest in value to $\sqrt{8300}$

- **A.** 19
- **B.** 90
- **C.** 830
- **D.** 900

(1 mark)

20 Show that $\frac{14}{\sqrt{7}}$ can be written in the form $a\sqrt{b}$ where a and b are integers.

Hard Questions

1 Rationalise the denominator

$$\frac{1}{\sqrt{2}+1}$$

(2 marks)

2 (a) Rationalise the denominator of $\frac{5}{\sqrt{2}}$.

(2 marks)

(b) Expand and simplify $(2 + \sqrt{3})^2 - (2 - \sqrt{3})^2$.

(2 marks)

3 Expand $(1+\sqrt{2})(3-\sqrt{2})$ Give your answer in the form $a+b\sqrt{2}$ where a and b are integers.

(2 marks)

4 (a) Martin did this question.

Rationalise the denominator of $\frac{14}{2 + \sqrt{3}}$

Here is how he answered the question.

$$\frac{14}{2 + \sqrt{3}} = \frac{14 \times (2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})}$$

$$= \frac{28 - 14\sqrt{3}}{4 + 2\sqrt{3} - 2\sqrt{3} + 3}$$

$$= \frac{28 - 14\sqrt{3}}{7}$$

$$= 4 - 2\sqrt{3}$$

Martin's answer is wrong.

Find Martin's mistake.

(1 mark)

(b) Sian did this question.

Rationalise the denominator of
$$\frac{5}{\sqrt{12}}$$

Here is how she answered the question.

$$\frac{5}{\sqrt{12}} = \frac{5\sqrt{12}}{\sqrt{12} \times \sqrt{12}}$$
$$= \frac{5 \times 3\sqrt{2}}{12}$$
$$= \frac{5\sqrt{2}}{4}$$

Sian's answer is wrong.

Find Sian's mistake.

5 Simplify fully
$$\frac{(6-\sqrt{5})(6+\sqrt{5})}{\sqrt{31}}$$

You must show your working.

(3 marks)

6
$$\sqrt{5}(\sqrt{8} + \sqrt{18})$$
 can be written in the form $a\sqrt{10}$ where a is an integer.

Find the value of a.

(3 marks)

7 Show that
$$\frac{(4-\sqrt{3})(4+\sqrt{3})}{\sqrt{13}}$$
 simplifies to $\sqrt{13}$.

(2 marks)

8 (a) Express
$$\sqrt{3} + \sqrt{12}$$
 in the form $a\sqrt{3}$ where a is an integer.

(b) Express
$$\left(\frac{1}{\sqrt{3}}\right)^7$$
 in the form $\frac{\sqrt{b}}{c}$ where b and c are integers.

(3 marks)

9 Rationalise the denominator of $\frac{4}{7 - \sqrt{5}}$

Show each stage of your working.

Give your answer in the form $a+b\sqrt{5}$ where a and b are fractions in their simplest forms.

(3 marks)

10 Given that y is a prime number,

express
$$\frac{3}{2-\sqrt{y}}$$
 in the form $\frac{a+b\sqrt{y}}{c-y}$ where a , b and c are integers.

(2 marks)

11 Without using a calculator, rationalise the denominator of $\frac{6}{3-\sqrt{7}}$

Simplify your answer.

You must show each stage of your working.

12 Show that $\frac{\sqrt{8}}{\sqrt{8}-2}$ can be written in the form $n+\sqrt{n}$, where n is an integer.

Show your working clearly.

(3 marks)

13 Express $\frac{2}{\sqrt{3}-1}$ in the form $p+\sqrt{q}$

where p and q are integers. Show your working clearly.

(2 marks)

14 Show that $\frac{14}{3-\sqrt{2}}$ can be written in the form $a+b\sqrt{2}$.

(5 marks)

15 Show that $\frac{\sqrt{150} - \sqrt{6}}{\sqrt{2} \times \sqrt{3}}$ simplifies to an integer.

(3 marks)

16 Show that $(5\sqrt{3} - \sqrt{12})^2$ simplifies to an integer.

(3 marks)

17 Show that $\frac{\sqrt{98}-3\sqrt{2}}{4\sqrt{2}-4}$ can be written as $a+b\sqrt{2}$, where a and b are integers.

(4 marks)

Very Hard Questions

$$a = \sqrt{8} + 2$$

1 $b = \sqrt{8} - 2$
 $T = a^2 - b^2$

Work out the value of T.

Give your answer in the form $c\sqrt{2}$ where c is an integer.

(4 marks)

2 Show that $\frac{6-\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b\sqrt{2}$ where a and b are integers.

(3 marks)

3 Show that $\frac{1}{1+\frac{1}{\sqrt{2}}}$ can be written as $2-\sqrt{2}$

(3 marks)

$$\begin{array}{cc}
 a & a = \sqrt{8} + 4 \\
 b & = \sqrt{8} - 4
 \end{array}$$

$$(a-b)(a+b)$$
 can be written in the form $y\sqrt{4y}$

Find the value of *y* Show your working clearly.

(3 marks)

5 Rationalise the denominator of $\frac{a+\sqrt{4b}}{a-\sqrt{4b}}$ where a is an integer and b is a prime number.

Simplify your answer.

(3 marks)

6 Show that $\frac{2}{6-3\sqrt{2}}$ can be written in the form $\frac{a+\sqrt{a}}{b}$

where a and b are integers. Show your working clearly.

7 Express $\frac{8}{\sqrt{5}-1}$ in the form $\sqrt{a}+b$ where a and b are integers.

Show each stage of your working clearly.

(3 marks)

8 The area of a rectangle is 18 cm^2

The length of the rectangle is $(\sqrt{7} + 1)$ cm.

Without using a calculator and showing each stage of your working, find the width of the rectangle.

Give your answer in the form $a\sqrt{b} + c$ where a, b and c are integers.

.....cm

(3 marks)

9 Show that $\frac{4+\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b\sqrt{2}$, where a and b are integers.

Show each stage of your working clearly and give the value of a and the value of b.

10 In the following equation, n is an integer greater than 1.

$$(\sqrt{2})^n = k\sqrt{2}$$

i) Find k when n = 7.

ii) Find n when k = 64.

11 Show that $\frac{\left(4+2\sqrt{5}\right)}{\sqrt{5}-1}$ can be simplified to $\frac{3\sqrt{5}+7}{2}$

(4 marks)

12 (a) Here is a sequence.

$$5 \ 5\sqrt{3} \ 15 \ 15\sqrt{3}$$

Work out the next term.

(1 mark)

(b) Find the *n*th term.

13 Simplify
$$\sqrt{80} + \sqrt{2\frac{2}{9}}$$

Give your answer in the form $\frac{a\sqrt{5}}{b}$ where a and b are integers.

(3 marks)

14 Work out
$$\sqrt{18} - \frac{28}{\sqrt{50}}$$

Give your answer in the form $\frac{\sqrt{a}}{b}$ where a and b are integers.

(4 marks)

15 Show that
$$\frac{2\sqrt{6}}{\sqrt{5}} - \frac{\sqrt{3}}{\sqrt{10}}$$
 can be written in the form $\frac{c\sqrt{d}}{10}$

where c and d are integers.