

IGCSE · Cambridge (CIE) · Maths

Non-Calculator Questions

Functions

Introduction to Functions / Domain & Range / Composite Functions / Inverse **Functions**

Total Marks	/167	
Very Hard (15 questions)	/47	
Hard (15 questions)	/62	
Medium (12 questions)	/58	

Scan here to return to the course or visit savemyexams.com

Medium Questions

1 (a)
$$f(x) = 3 - 2x$$
 $g(x) = 2x + 3$

i) Find f(-3).

[1]

ii) Find gf(-3).

[1]

(2 marks)

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots$

(2 marks)

2

$$g(x) = 2x + 7$$
 $h(x) = 3x - 8$

i) Find gh(x) in its simplest form.

[2]

ii) Find $g^{-1}(x)$.

 $g^{-1}(x)$ [2]

3 (a)
$$f(x) = x^2 + 1$$

$$g(x) = 1 - 2x$$

3 (a)
$$f(x) = x^2 + 1$$
 $g(x) = 1 - 2x$ $h(x) = \frac{1}{x}, x \neq 0$ $j(x) = 5^x$

$$j(x) = 5^x$$

Find the value of

i)
$$f(3)$$
,

[1]

[1]

(b) Find $g^{-1}(x)$.

$$g^{-1}(x) = \dots$$

(2 marks)

(c) Find x when h(x) = 2.

$$X = \dots$$

(1 mark)

4 (a)
$$f(x) = 2x + 1$$
 $g(x) = x^2 + 4$

Solve the equation f(x) = g(1).

 $X = \dots$

(2 marks)

(b) Find
$$f^{-1}(x)$$
.

$$f^{-1}(x) = \dots$$

(2 marks)

(c) Find
$$gf(x)$$
 in its simplest form.

(3 marks)

5
$$f(x) = 3x - 5$$
.

Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$

(2 marks)

$$f(x) = 2x - 3$$
 $g(x) = 9 - x^2$ $h(x) = 3^x$

$$g(x) = 9 - x^2$$

$$h(x) = 3^x$$

Find

i)
$$f(4)$$
,

- 1	_	

ii) hg(3),

[2]

iii) g(2x) in its simplest form,

[1]

iv) fg(x), in its simplest form.

[2]

(6 marks)

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots$

Find gh(2).

(2 marks)

(b) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$

(2 marks)

8 f(x) = 7 + 3x.

Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots$$

(2 marks)

9
$$f(x) = x^3$$
 $g(x) = 5x + 2$

i) Find gf(x).

[1]

ii) Find $g^{-1}(x)$.

$$g^{-1}(x) = \dots$$
 [2]

(3 marks)

$$f(x) = 3x + 4$$

$$f(x) = 3x + 4$$
 $g(x) = 2x - 1$ $h(x) = 3^x$

$$h(x) = 3^x$$

Find
$$g\left(\frac{1}{2}\right)$$
.

(1 mark)

(b) Find
$$fh(-1)$$
.

(2 marks)

(c) Find
$$g^{-1}(x)$$
.

$$g^{-1}(x) = \dots$$

(2 marks)

(d) Find
$$ff(x)$$
 in its simplest form.

(2 marks)

$$f(x) = 2x - 3$$

$$f(x) = 2x - 3$$
 $g(x) = x^2 + 1$

i) Find
$$gg(2)$$
.

[2]

ii) Find
$$g(x + 2)$$
, giving your answer in its simplest form.

iii) Find x when f(x) = 7.

$$X = \dots [2]$$

iv) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

(8 marks)

12 (a)
$$f(x) = 3x - 2$$
$$g(x) = \frac{10}{x+2}$$

Express the inverse function f^{-1} in the form $f^{-1}(x) = ...$

(2 marks)

(b) Find gf(x)Simplify your answer.

Hard Questions

1 (a)
$$g(x) = 2x + 3$$
 $h(x) = 2^x$

Find x when gg(x) = 7.

(3 marks)

(b) Find *x* when
$$h^{-1}(x) = 5$$
.

2
$$f(x) = 3x^2 + a$$
 where *a* is an integer. $f(-2) = 19$

Find the value of *a*.

$$a = \dots$$

(2 marks)

3 (a)
$$f(x) = 4 - 3x$$
 $g(x) = x^2 + x$ $h(x) = 3^x$

Find fh(2).

(b) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots$

(2 marks)

(c) Simplify.

i)
$$f(1-2x)$$

[2]

ii)
$$gf(x) - 9g(x)$$

[4]

(6 marks)

4 (a)
$$f(x) = 4x + 3$$
 $g(x) = 5x - 4$ $fg(x) = 20x + p$

Find the value of p.

(2 marks)

(b)
$$h(x) = \frac{5x-1}{3}$$

Find $h^{-1}(x)$.

$$h^{-1}(x) = \dots$$

(3 marks)

5
$$f(x) = 7x - 4$$

Find the value of x when f(x+2) = -11.

(2 marks)

6
$$f(x) = 3x - 5$$
 $g(x) = 2^x$

Find fg(3).

(2 marks)

7
$$g(x) = \frac{10}{x}, x \neq 0$$
.

Solve.

$$g(2x+1)=4$$

X =

(3 marks)

8 (a)
$$f(x) = 2x - 3$$
 $g(x) = 9 - x^2$

Find x when 5f(x) = 3.

(2 marks)

(b) Solve the equation
$$gf(x) = -16$$
.

$$X =$$
 or $X =$

(4 marks)

9
$$f(x) = 2x + 3$$

Find f(1-x) in its simplest form.

(2 marks)

10

$$f(x) = 7 + 3x$$
 $g(x) = x^4$

$$g(x) = x^4$$

Find the value of x when f(x) = g(2).

(2 marks)

11
$$h(x) = ax^2 + 1$$

Find the value of a when h(-2) = 21.

(2 marks)

12
$$f(x) = 3x + 4$$
.

Find $(f(x))^2$ in the form $ax^2 + bx + c$.

(2 marks)

$$f(x) = 5 - 2x$$
 $g(x) = x^2 + 8$

$$g(x) = x^2 + 8$$

Calculate ff(-3)

(b) Find

i) g(2x),

[1]

ii) $f^{-1}(x)$.

 $f^{-1}(x) = \dots [2]$

(3 marks)

14

$$f(x) = 8 - 3x$$

$$f(x) = 8 - 3x$$
 $g(x) = \frac{10}{x+1}, x \ne -1$ $h(x) = 2^x$

$$h(x) = 2^x$$

Find

i)
$$hf\left(\frac{8}{3}\right)$$
,

[2]

ii) gh(-2),

[2]

iii)
$$g^{-1}(x)$$
,

$$g^{-1}(x) = \dots [3]$$

iv)
$$f^{-1}f(5)$$
.

[1]

(8 marks)

15 (a)
$$f(x) = 7 - x$$
 $g(x) = 4x + 2$ $h(x) = 15 - x^2$

Find ff(2).

(2 marks)

(b) Find gf(x) in its simplest form.

(2 marks)

(c) Find h(2x) in its simplest form.

Very Hard Questions

$$g(x) = 1 - 2x$$

Find the value of

Find g(x)g(x) - gg(x), giving your answer in the form $ax^2 + bx + c$.

(4 marks)

2
$$j(x) = 5^x$$
.

Find x when $j^{-1}(x) = 2$.

(1 mark)

3
$$h(x) = 3^x$$
.

Find the value of k for which $\frac{1}{h(x)} = 9^{kx}$

4
$$f(x) = 3x + 2$$
 $g(x) = x^2 + 1$

$$g(x) = x^2 + 1$$

Find
$$\frac{g(x)}{f(x)} + x$$
.

Give your answer as a single fraction, in terms of x, in its simplest form.

(3 marks)

5
$$h(x) = x^2$$

Find the values of p that satisfy h(p) = p.

(2 marks)

6 (a)
$$f(x) = 7 - 2x$$
 $g(x) = \frac{10}{x}, x \neq 0$ $h(x) = 27^x$

Simplify, giving your answer as a single fraction.

$$\frac{1}{f(x)} + g(x)$$

(3 marks)

(b) Find
$$h^{-1}(19683)$$
.

(1 mark)

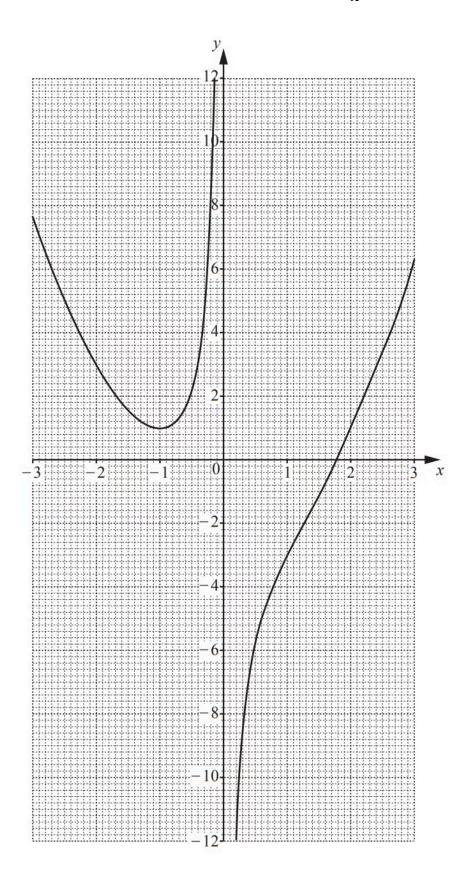
7
$$h(x) = 3^x$$
.

Find *x* when $h^{-1}(x) = -2$.

(1 mark)

$$f(x) = 7x - 2$$

$$g(x) = x^2 + 1$$


$$h(x) = 3^x$$

 $gg(x) = ax^4 + bx^2 + c$ Find the values of a, b, and c.

(b) Find *x* when hf(x) = 81.

(3 marks)

9 The diagram shows the graph of y = f(x) where $f(x) = x^2 - \frac{2}{x} - 2$, $x \ne 0$.

Use the graph to find

i)
$$f(1)$$
.

[1]

ii)
$$ff(-2)$$
.

[2]

(3 marks)

10
$$h(x) = 3^x$$
.

If $h(3x) = k^x$, find the value of k.

(2 marks)

$$g(x) = 2x - 1$$
 $h(x) = 3^x$

$$h(x) = 3^{x}$$

Find *x* when $h^{-1}(x) = g(2)$.

(2 marks)

12 The functions \boldsymbol{f} and \boldsymbol{g} are such that

f(x) = 5x + 3 g(x) = ax + b where a and b are constants.

$$g(3) = 20$$
 and $f^{-1}(33) = g(1)$

Find the value of a and the value of b.

(5 marks)

13
$$f(x) = \frac{1}{2}x$$
 $g(x) = x - x^2$

Solve
$$f^{-1}(x) = gf(x)$$

(4 marks)

14
$$f(x) = \frac{2x}{5} - 1$$

Work out the value of $f^{-1}(3) + f(-0.5)$

(5 marks)

15
$$f(x) = 5 - x$$
 and $g(x) = 3x + 7$
Simplify $f(2x) + g(x - 1)$

(3 marks)