

IGCSE · Cambridge (CIE) · Maths

Non-Calculator Questions

Quadratic Equations

Solving Quadratics by Factorising / The Quadratic Formula / Completing the Square / Deciding the Quadratic Method

Total Marks	/39
Very Hard (4 questions)	/21
Hard (3 questions)	/10
Medium (3 questions)	/8

Scan here to return to the course or visit savemyexams.com

Medium Questions

1 (a) Write $x^2 - 4x + 7$ in the form $(x - a)^2 + b$.

(2 marks)

(b) Write down the coordinates of the turning point of the graph of $y = x^2 - 4x + 7$.

(1 mark)

2 Write $x^2 + 10x + 14$ in the form $(x + a)^2 + b$.

(2 marks)

$$x^2 + 4x - 9 = (x + a)^2 + b$$

Find the value of a and the value of b.

a = *b* =

(3 marks)

Hard Questions

1 i) Write $x^2 + 8x - 9$ in the form $(x + k)^2 + h$.

[2]

ii) Use your answer to **part** (i) to solve the equation $x^2 + 8x - 9 = 0$.

 $X = \dots$ or $X = \dots$ [2]

(4 marks)

2 Solve by factorisation $10r^2 - 23r + 9 = 0$.

r = or r =

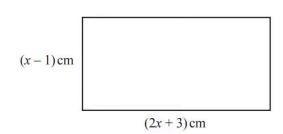
(3 marks)

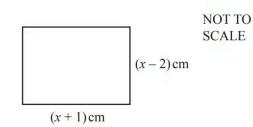
3 $x^2 - 12x + a = (x + b)^2$ Find the value of a and the value of b.

> *a* = *b* =

> > (3 marks)

Very Hard Questions


1 The solutions of the equation $x^2 + bx + c = 0$ are $\frac{-7 + \sqrt{61}}{2}$ and $\frac{-7 - \sqrt{61}}{2}$. Find the value of b and the value of c.


b =

 $c = \dots$

(3 marks)

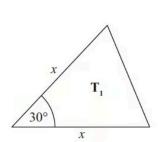
2

The difference between the areas of the two rectangles is 62 cm².

i) Show that $x^2 + 2x - 63 = 0$.

[3]

ii) Factorise $x^2 + 2x - 63$.


[2]

iii) Solve the equation $x^2 + 2x - 63 = 0$ to find the difference between the perimeters of the two rectangles.

..... cm [2]

(7 marks)

3

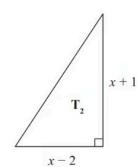
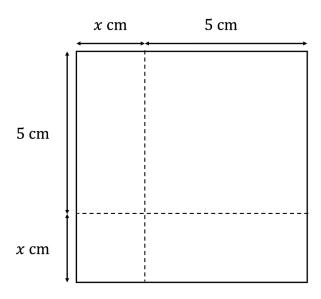


Diagram **NOT** accurately drawn


The lengths of the sides are in centimetres.

The area of triangle \mathbf{T}_1 is equal to the area of triangle \mathbf{T}_2 .

Work out the value of x, giving your answer in the form $a + \sqrt{b}$ where a and b are integers.

(5 marks)

4 (a)

The area of the square above is $30\ cm^2$.

Show that
$$x^2 + 10x = 5$$

(3 marks)

(b) Show that the values of x can be written in the form $a+\sqrt{b}$, where a and b are integers.

(3 marks)