

IGCSE · Cambridge (CIE) · Maths

Calculator Questions

Vectors

Introduction to Column Vectors / Representing Vectors as Diagrams / Magnitude of a Vector / Position & Displacement Vectors / Finding Vector Paths / Problem Solving with Vectors

Total Marks	/71
Very Hard (4 questions)	/21
Hard (5 questions)	/24
Medium (7 questions)	/26

Scan here to return to the course or visit savemyexams.com

Medium Questions

1
$$\overrightarrow{VW} = \begin{pmatrix} 10 \\ -24 \end{pmatrix}$$

Find $|\overrightarrow{VW}|$.

(2 marks)

$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -1 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix} \qquad \overrightarrow{DC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$\overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

$$\overrightarrow{DC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Find

i)
$$\overrightarrow{AC}$$
,

$$\overrightarrow{AC} = \begin{pmatrix} \\ \end{pmatrix}$$
 [2]

ii)
$$\overrightarrow{BD}$$
,

$$\overrightarrow{BD} = \left(\right)$$
 [2]

iii)
$$|\overrightarrow{BC}|$$
.

[2]

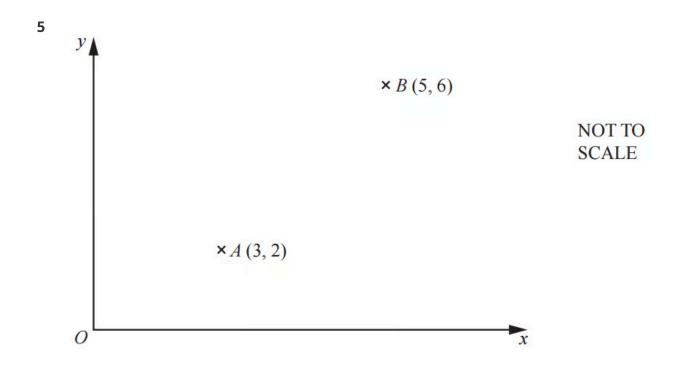
(6 marks)

$$\mathbf{g} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$

i) Find $2\mathbf{p} + \mathbf{q}$.

ii) Find |p|.

[2]


(4 marks)

$$\mathbf{4} \quad \mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 14 \\ 9 \end{pmatrix}$$

i) Find $3\mathbf{a} - 2\mathbf{b}$.

ii) Find | **a** |.

(4 marks)

i) Find the column vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \\ \end{pmatrix}$$
 [1]

ii) Find $|\overrightarrow{AB}|$.

$$|\overrightarrow{AB}|$$
 =[2]

(3 marks)

$$\mathbf{6} \overrightarrow{OA} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \overrightarrow{AB} = \begin{pmatrix} 8 \\ -7 \end{pmatrix} \overrightarrow{AC} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

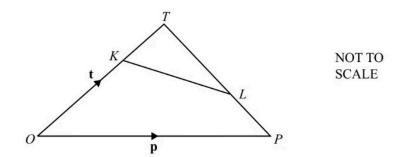
Find

i)
$$|\overrightarrow{OB}|$$
,

$$\left|\overrightarrow{OB}\right|$$
 =[3]

ii)
$$\overrightarrow{BC}$$
.

$$\overrightarrow{BC} = \left(\right)$$
 [2]


(5 marks)

7 Find the magnitude of the vector
$$\begin{pmatrix} -1 \\ 7 \end{pmatrix}$$
.

(2 marks)

Hard Questions

1 (a) The diagram shows triangle *OPT*.

In the diagram $\overrightarrow{OT} = \mathbf{t}$ and $\overrightarrow{OP} = \mathbf{p}$. OK : KT = 2 : 1 and TL : LP = 2 : 1.

Find, in terms of **t** and **p**, in its simplest form

i)
$$\overrightarrow{PL}$$

[2]

ii)
$$\overrightarrow{KL}$$

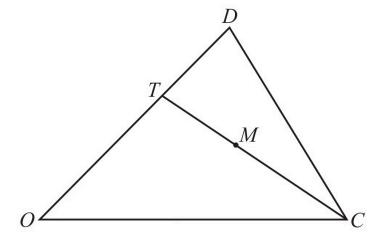
[2]

(4 marks)

(b) KL is extended to the point M.

$$\overrightarrow{KM} = -\frac{2}{3}\mathbf{t} + \frac{4}{3}\mathbf{p}.$$

Show that M lies on OP extended.


2 *P* is the point (16, 9) and *Q* is the point (22, 24).

N is the point on PQ such that PN = 2NQ. Find the co-ordinates of *N*.

(.....)

(4 marks)

3

NOT TO **SCALE**

In the diagram, O is the origin, OT = 2TD and M is the midpoint of TC. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$.

Find the position vector of M.

Give your answer in terms of \boldsymbol{c} and \boldsymbol{d} in its simplest form.

(3 marks)

$$\mathbf{4} \quad \mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 14 \\ 9 \end{pmatrix}$$

 $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$

Write down two simultaneous equations and solve them to find the value of $m{m}$ and the value of n. Show all your working.

m =

n =

(5 marks)

5 (a)

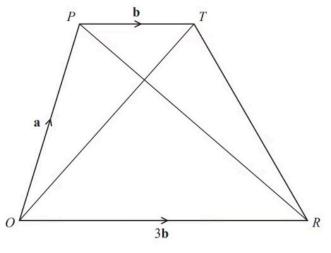


Diagram NOT accurately drawn

OPTR is a trapezium.

$$\overrightarrow{OP} = \mathbf{a}$$

$$\overrightarrow{PT} = \mathbf{b}$$

$$\overrightarrow{OR} = 3\mathbf{b}$$

i) Find \overrightarrow{OT} in terms of **a** and **b**

[1]

ii) Find \overrightarrow{PR} in terms of $\bf a$ and $\bf b$ Give your answer in its simplest form.

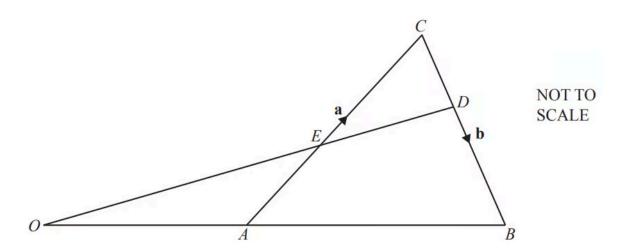
[1]

(2 marks)

(b) S is the point on PR such that PS: SR = 1:3

Find \overrightarrow{OS} in terms of ${\bf a}$ and ${\bf b}$.

Give your answer in its simplest form.


(2 marks)

(c) What does your answer to part (b) tell you about the position of point S?

(2 marks)

Very Hard Questions

1

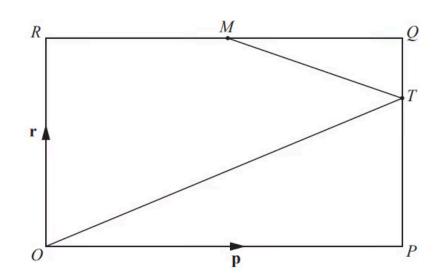
In the diagram, $O\!AB$ and $O\!E\!D$ are straight lines.

O is the origin, A is the midpoint of OB and E is the midpoint of AC. $\overrightarrow{AC} = \mathbf{a}$ and $\overrightarrow{CB} = \mathbf{b}$.

Find, in terms of $\bf a$ and $\bf b$, in its simplest form

i) \overrightarrow{AB} ,

$$\overrightarrow{AB}$$
 =[1]


ii) \overrightarrow{OE} ,

$$\overrightarrow{OE}$$
 =[2]

iii) the position vector of D.

[3]

2 (a)

NOT TO **SCALE**

OPQR is a rectangle and O is the origin.

M is the midpoint of RQ and PT: TQ = 2:1.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OR} = \mathbf{r}$.

Find, in terms of ${\bf p}$ and/or ${\bf r}$, in its simplest form

i) \overrightarrow{MQ} ,

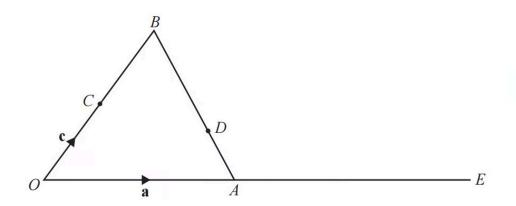
$$\overrightarrow{MQ}$$
 =[1]

ii) \overrightarrow{MT} ,

$$\overrightarrow{MT} = \dots [1]$$

iii) \overrightarrow{OT} ,

$$\overrightarrow{OT}$$
 =[1]


(b) $\it RQ$ and $\it OT$ are extended and meet at $\it U$.

Find the position vector of U in terms of ${\bf p}$ and ${\bf r}$. Give your answer in its simplest form.

(2 marks)

3 (a)

NOT TO **SCALE**

OAB is a triangle and $\it C$ is the mid-point of $\it OB$.

D is on AB such that AD:DB = 3 : 5.

OAE is a straight line such that OA:AE = 2:3.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

Find the following vectors, in terms of ${\bf a}$ and ${\bf c}$, in their simplest form

i) \overrightarrow{AB} ,

$$\overrightarrow{AB}$$
 =[1]

ii) \overrightarrow{AD} ,

$$\overrightarrow{AD}$$
 =[1]

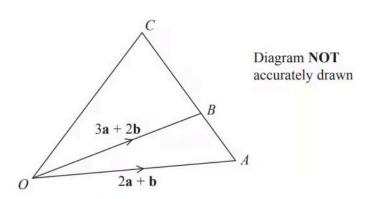
iii) \overrightarrow{CE} ,

$$\overrightarrow{CE}$$
 =[1]

iv) \overrightarrow{CD} .

$$\overrightarrow{CD}$$
 =[2]

(5 marks)


(b)
$$\overrightarrow{CE} = k\overrightarrow{CD}$$

Find the value of k.

k =

(1 mark)

4

ABC is a straight line.

$$AB:BC=2:5$$

$$\overrightarrow{OA} = 2\mathbf{a} + \mathbf{b}$$

$$\overrightarrow{OB} = 3\mathbf{a} + 2\mathbf{b}$$

Express \overrightarrow{OC} in terms of **a** and **b**. Give your answer in its simplest form.

(4 marks)

