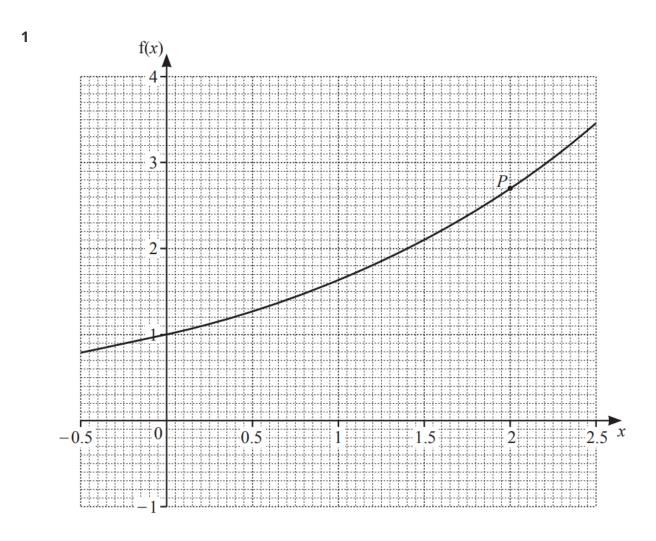


IGCSE · Cambridge (CIE) · Maths

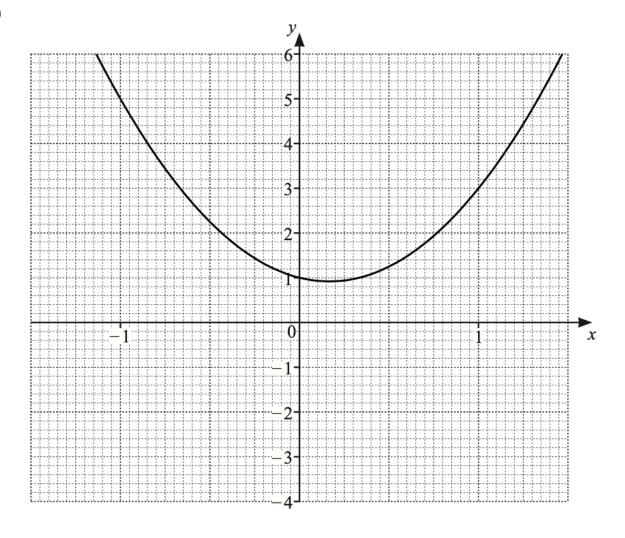
Calculator Questions

Further Graphs & **Tangents**

Types of Graphs / Drawing Graphs from Tables / Solving Equations from Graphs / Finding Gradients of Tangents


Total Marks	/169
Very Hard (4 questions)	/54
Hard (6 questions)	/83
Medium (7 questions)	/32

Scan here to return to the course or visit savemyexams.com


Medium Questions

The diagram shows the graph of a function.

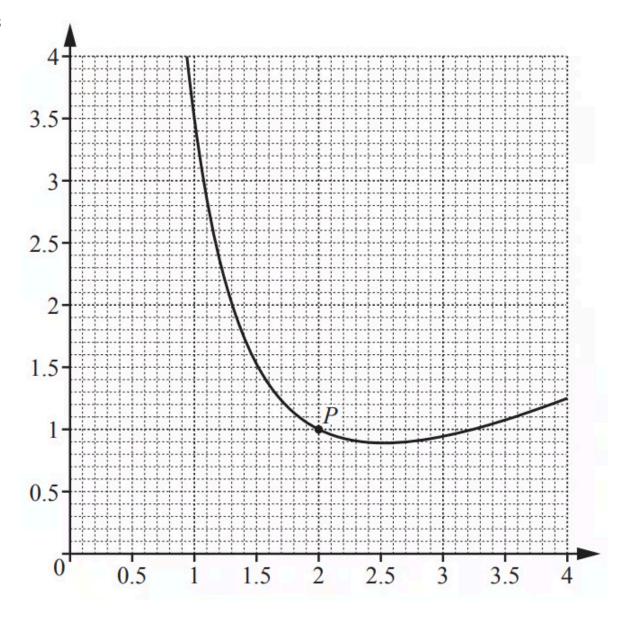
By drawing a suitable tangent, find an estimate for the gradient of the function at the point P.

2 (a)

i) Draw the tangent to the curve at x = 1.

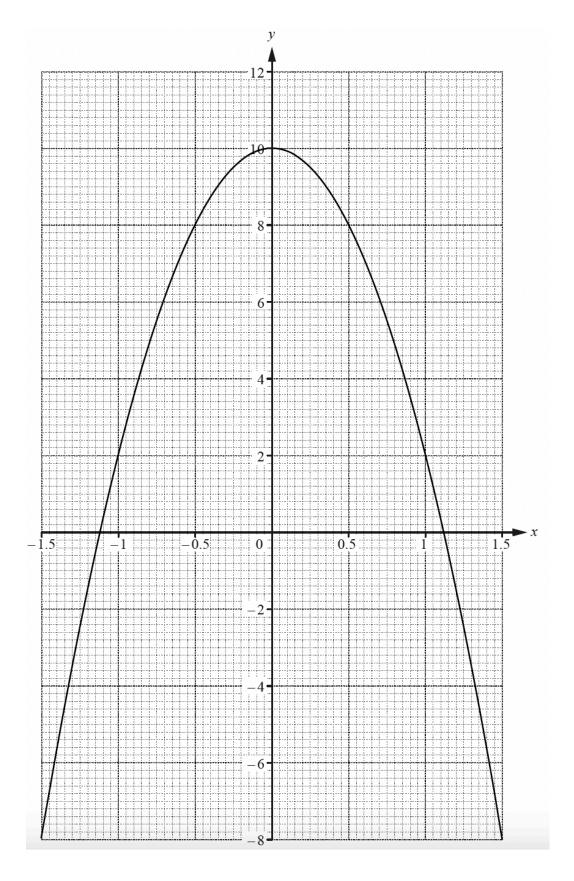
[1]

ii) Use your tangent to estimate the gradient of the curve at x = 1.


[2]

(3 marks)

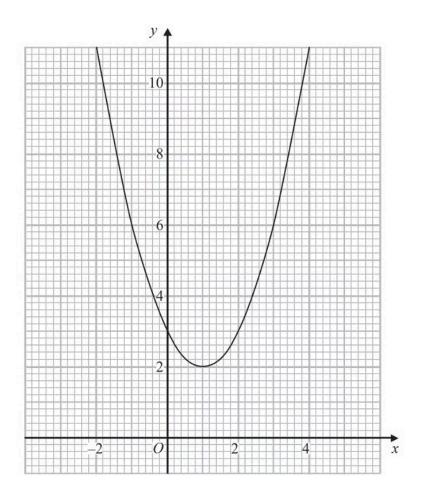
(b) Write down the equation of your tangent in the form y = mx + c.


(2 marks)

3

By drawing a suitable tangent, estimate the gradient of the curve at the point *P*. (3 marks)

4 (a) The graph of $y = 10 - 8x^2$ for $-1.5 \le x \le 1.5$ is drawn on the grid.


Write down the equation of the line of symmetry of the graph.

(1	mark)
٠.	11101111/

(b) On the grid, draw the tangent to the curve at the point where x = 0.5.

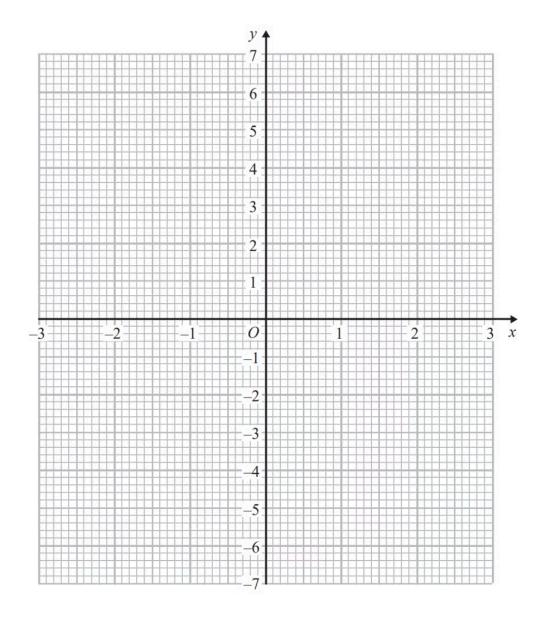
Find the gradient of this tangent.

5 (a) The diagram shows part of the graph of $y = x^2 - 2x + 3$

By drawing a suitable straight line, use your graph to find estimates for the solutions of $x^2 - 3x - 1 = 0$

(2 marks)

(b) *P* is the point on the graph of $y = x^2 - 2x + 3$ where x = 2

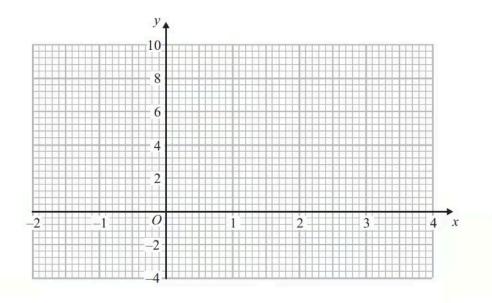

Calculate an estimate for the gradient of the graph at the point *P*.

6 (a) Complete the table of values for $y = x^2 - x - 6$

Х	-3	-2	-1	0	1	2	3
У	6			-6			

(2 marks)

(b) On the grid, draw the graph of $y = x^2 - x - 6$ for values of x from -3 to 3


(2 marks)

(c) Use your graph to find estimates of the solutions to the equation $x^2 - x - 6 = -2$ (2 marks) **7 (a)** Complete the table of values for $y = x^2 - 2x$

Х	-2	-1	0	1	2	3	4
У		3	0			3	

(2 marks)

(b) On the grid, draw the graph of $y = x^2 - 2x$ for values of x from -2 to 4

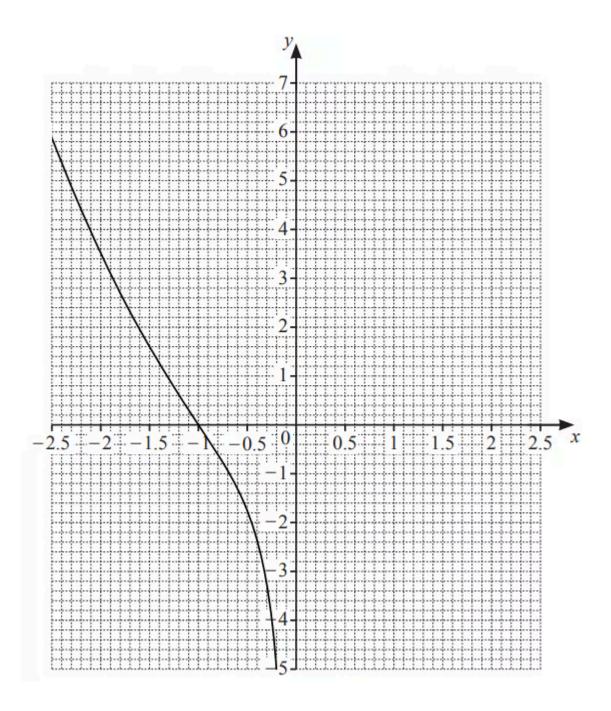
(2 marks)

(c) Solve $x^2 - 2x - 2 = 1$

(2 marks)

Hard Questions

1 (a)
$$y = x^2 + \frac{1}{x}, x \neq 0$$


Complete the table.

X	0.2	0.3	0.5	1	1.5	2	2.5
У	5.0	3.4	2.3		2.9		6.7

(2 marks)

(b) On the grid, draw the graph of
$$y = x^2 + \frac{1}{x}$$
 for $0.2 \le x \le 2.5$.

The graph of $y = x^2 + \frac{1}{x}$ for $-2.5 \le x \le -0.2$ has been drawn for you.

(4 marks)

(c) By drawing suitable straight lines on the grid, solve the following equations.

i)
$$x^2 + \frac{1}{x} = -2$$

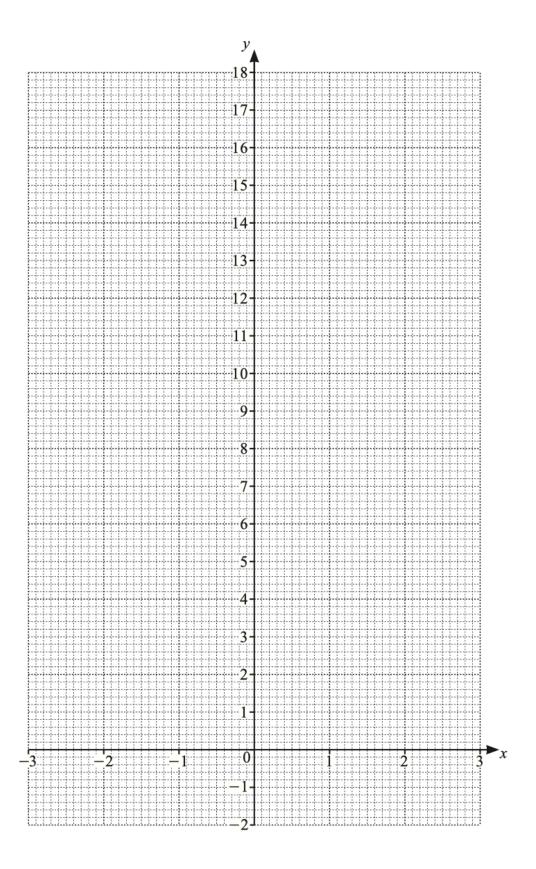
$$X = \dots [1]$$

$$ii)x^2 + \frac{1}{x} + x - 1 = 0$$

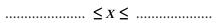
$$X =$$
 [2] (3 marks)

(d) k is an integer and the equation $x^2 + \frac{1}{x} = k$ has three solutions. Write down a possible value of k.

 $k = \dots$


(1 mark)

2 (a) The table shows some values of $y = \frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x}$, $x \neq 0$.


X	-3	-2	-1	-0.5	-0.3	0.2	0.3	0.5	1	2	3
У	5.3	3.3		8.1	17.8		4.5	0.1	-0.5	1.3	

Complete the table.

(b) On the grid, draw the graph of $y = \frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x}$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

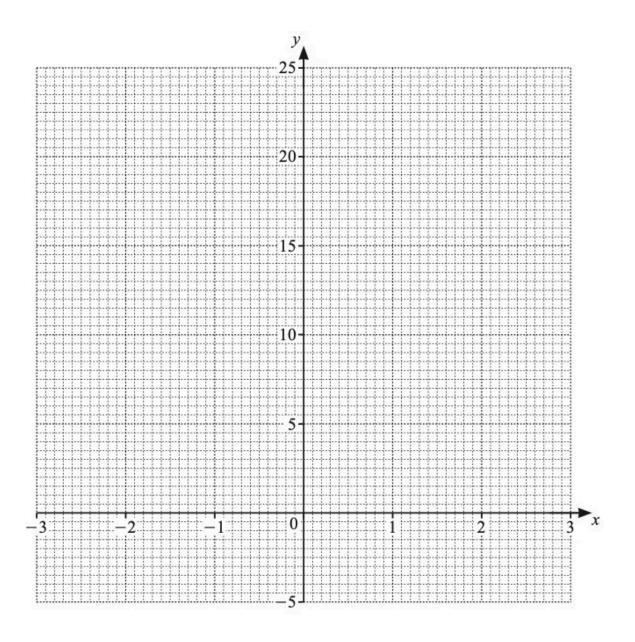
(c) Use your graph to solve $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} \le 0$.

(2 marks)

(d) Find the smallest positive integer value of k for which $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = k$ has two solutions for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.

(1 mark)

(e) By drawing a suitable straight line, solve $\frac{x^2}{2} + \frac{1}{x^2} - \frac{2}{x} = 3x + 1$ for $-3 \le x \le -0.3$ and $0.2 \le x \le 3$.


> $X = \dots$ (3 marks)

3 (a) The table shows some values for $y = x^3 + x^2 - 5x$.

X	-3	-2	-1.5	-1	0	1	1.5	2	2.5	3
У	-3	6	6.4		0		-1.9	2	9.4	

Complete the table.

(b) On the grid, draw the graph of $y = x^3 + x^2 - 5x$ for $-3 \le x \le 3$.

(4 marks)

(c) Use your graph to solve the equation $x^3 + x^2 - 5x = 0$.

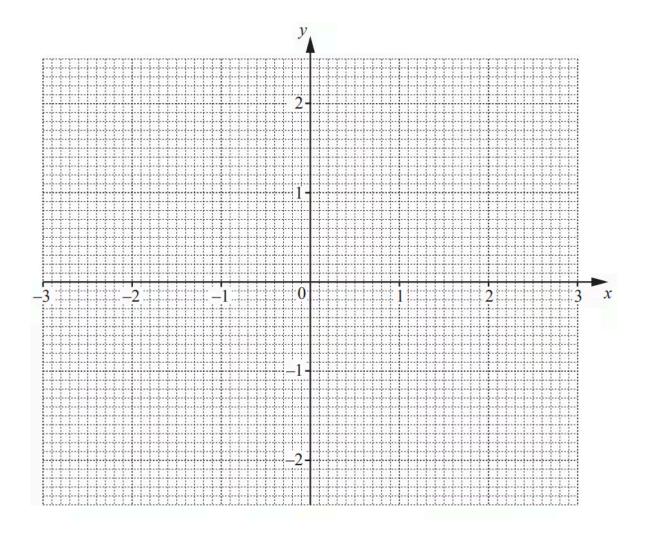
$$X =$$
 or $X =$ or $X =$

(2 marks)

- (d) By drawing a suitable tangent, find an estimate of the gradient of the curve at x = 2. (3 marks)
- (e) Write down the largest value of the integer, k, so that the equation $x^3 + x^2 5x = k$ has three solutions for $-3 \le x \le 3$.

k =

(1 mark)


4 (a) The table shows some values for $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

X	-3	-2	-1.5	-1	0	1	1.5	2	3
y			2.0	1.7	0		-2.0	-1.6	

Complete the table.

(3 marks)

(b) On the grid, draw the graph of $y = \frac{3}{10}x^3 - 2x$ for $-3 \le x \le 3$.

(4 marks)

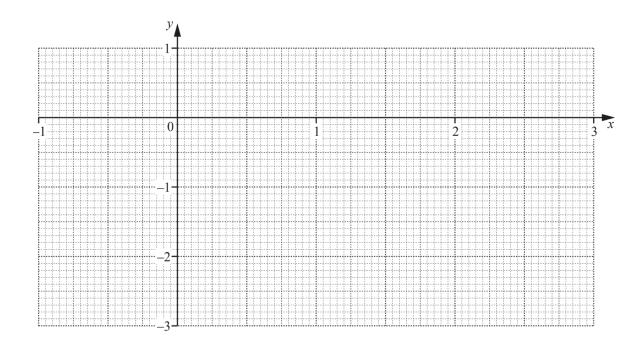
(c) On the grid, draw a suitable straight line to solve the equation $\frac{3}{10}x^3 - 2x = \frac{1}{2}(1-x)$ for $-3 \le x \le 3$.

> $X = \dots$ or $X = \dots$ or $X = \dots$ (4 marks)

(d) For $-3 \le x \le 3$, the equation $\frac{3}{10}x^3 - 2x = 1$ has n solutions. Write down the value of

n =

(1 mark)


5 (a) The table shows some values of $y = x^3 - 3x^2 + x$.

X	-0.75	-0.5	-0.25	0	0.5	1	1.5	2	2.5	2.75
У	-2.9	-1.4	-0.5		-0.1	-1	-1.9		-0.6	

Complete the table.

(3 marks)

(b) On the grid, draw the graph of $y = x^3 - 3x^2 + x$ for $-0.75 \le x \le 2.75$.

(3 marks)

(c) Use your graph to complete the inequalities in x for which y > -1.

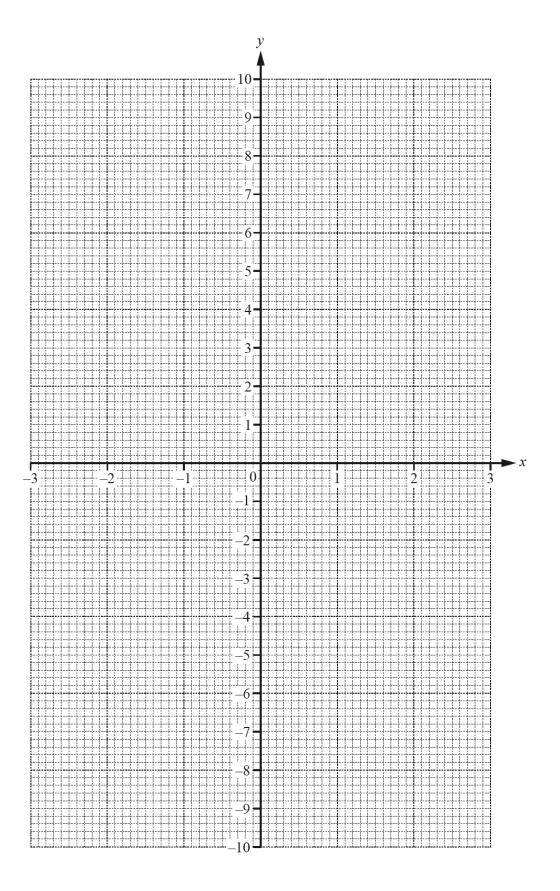
 < <i>x</i> <	ar	nd	<i>x</i> >	
				(3 marks)

- (d) The equation $x^3 3x^2 + 2x 1 = 0$ can be solved by drawing a straight line on the grid.
 - i) Write down the equation of this line.

[2]

ii)On the grid, draw this line and use it to solve the equation $x^3 - 3x^2 + 2x - 1 = 0$.

$$X =$$
 [3]


(5 marks)

(e) By drawing a suitable tangent, find an estimate for the gradient of the graph of $y = x^3 - 3x^2 + x$ at x = -0.25.

6 (a) Complete the table of values for $y = \frac{x^3}{3} - \frac{1}{2x^2}$, $x \ne 0$.

X	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
У	-9.1	-2.8	-0.8		-5.6	-5.5	-2.0			8.9

(b) On the grid, draw the graph of $y = \frac{x^3}{3} - \frac{1}{2x^2}$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

(5 marks)

(c) i) By drawing a suitable tangent, find an estimate of the gradient of the curve at x = -2.

[3]

ii) Write down the equation of the tangent to the curve at x = -2. Give your answer in the form y = mx + c.

$$y = \dots [2]$$

(5 marks)

(d) Use your graph to solve the equations.

i)
$$\frac{x^3}{3} - \frac{1}{2x^2} = 0$$

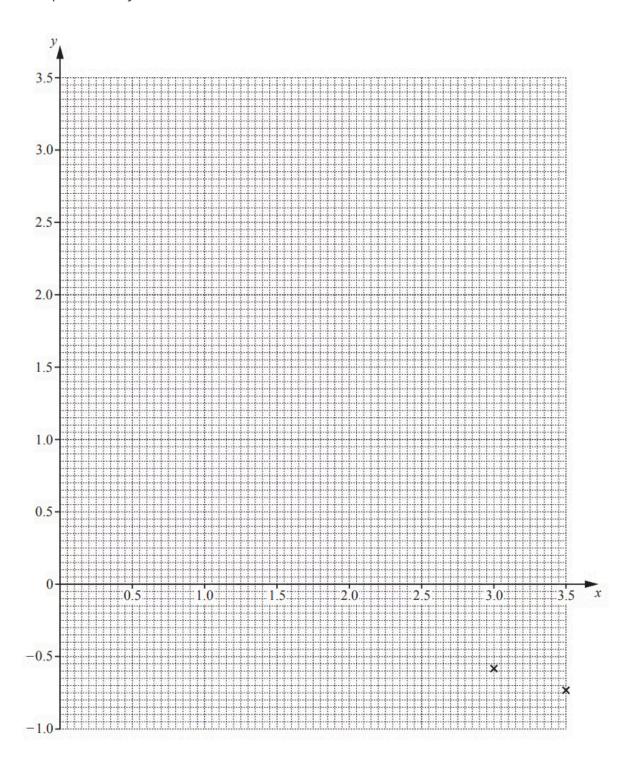
$$X = \dots [1]$$

ii)
$$\frac{x^3}{3} - \frac{1}{2x^2} + 4 = 0$$

$$x = \dots$$
 or $x = \dots$ or $x = \dots$ [3]

Very Hard Questions

1 (a) The table shows some values of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.


X	0.15	0.2	0.5	1	1.5	2	2.5	3	3.5
У	3.30		0.88		-0.04		-0.43	-0.58	-0.73

Complete the table.

(3 marks)

(b) On the grid, draw the graph of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$. The last two points have

been plotted for you.

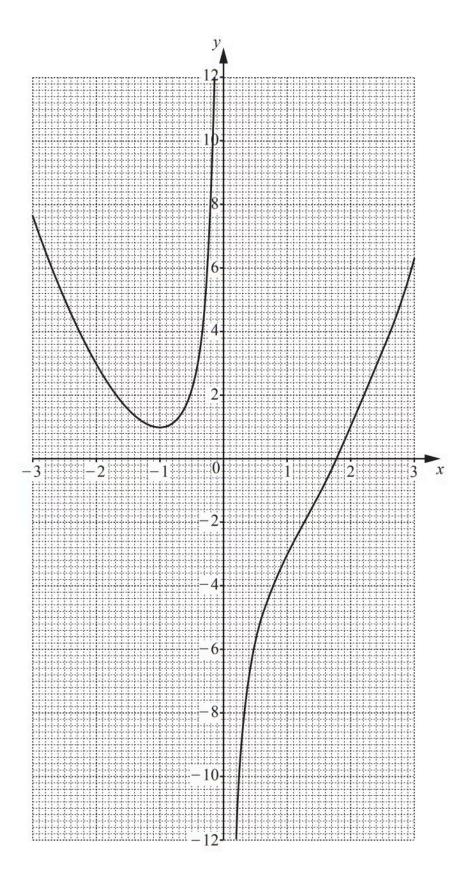
(4 marks)

(c) Use your graph to solve the equation $\frac{1}{2x} - \frac{x}{4} = \frac{1}{2}$ for $0.15 \le x \le 3.5$.

X=	 	•••	•••	•••	 •••	• • •	 •••	• • •	•••	•••	•••	•••		••
								(1		m	٦á	ar	·k	()

(d) i) On the grid, draw the line y = 2 - x.

[2]


ii) Write down the x co-ordinates of the points where the line y = 2 - x crosses the graph of $y = \frac{1}{2x} - \frac{x}{4}$ for $0.15 \le x \le 3.5$.

$$X =$$
 and $X =$ [2] (4 marks)

(e) Show that the graph of $y = \frac{1}{2x} - \frac{x}{4}$ can be used to find the value of $\sqrt{2}$ for $0.15 \le x \le 3.5$.

(2 marks)

2 (a) The diagram shows the graph of y = f(x) where $f(x) = x^2 - \frac{2}{x} - 2$, $x \ne 0$.

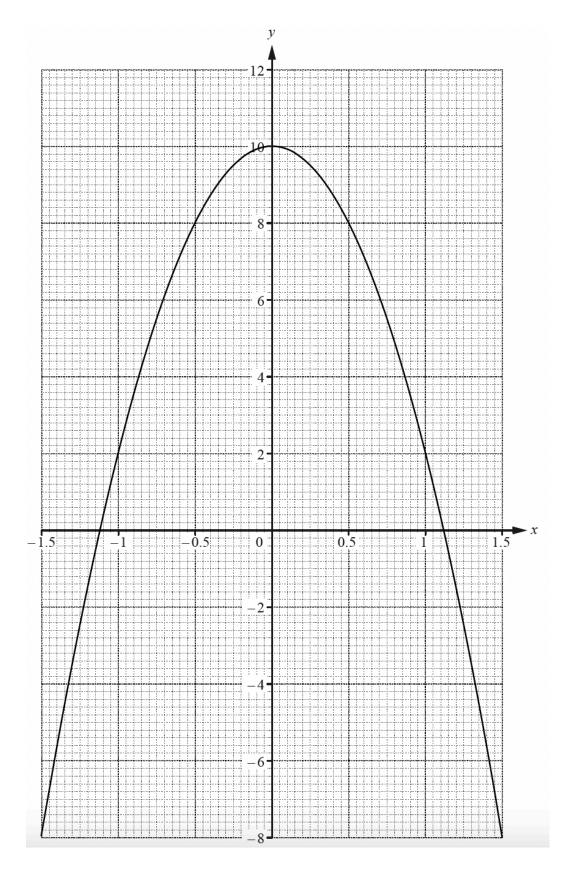
On the grid, draw a suitable straight line to solve the equation $x^2 - \frac{2}{x} - 7 = -3x$ for $-3 \le x \le 3$.

- **(b)** By drawing a suitable tangent, find an estimate of the gradient of the curve at x = -2. (3 marks)
- (c) i) Complete the table for y = g(x) where $g(x) = 2^{-x}$ for $-3 \le x \le 3$.

X	-3	-2	-1	0	1	2	3
У			2	1	0.5		0.125

[3]

ii) On the grid, draw the graph of y = g(x).


[3]

iii) Use your graph to find the **positive** solution to the equation f(x) = g(x).

$$X = \dots$$
 [1]

(7 marks)

3 (a) The graph of $y = 10 - 8x^2$ for $-1.5 \le x \le 1.5$ is drawn on the grid.

And the table shows some values for $y = x^3 + 3x + 4$.

X	-1.5	-1	-0.5	0	0.5	1	1.5
у	-3.9				5.6	8	11.9

i) Complete the table

[3]

ii) On the grid, draw the graph of $y = x^3 + 3x + 4$ for $-1.5 \le x \le x1.5$.

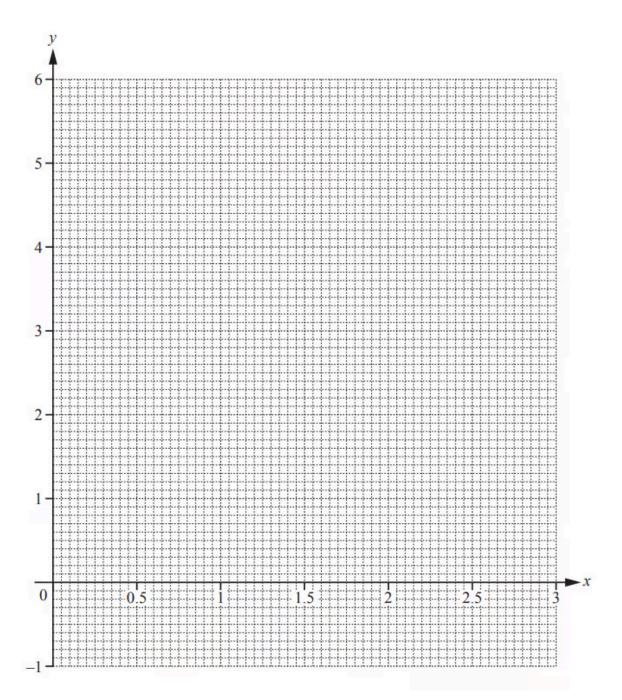
[4]

(7 marks)

(b) Show that the values of *x* where the two curves intersect are the solutions to the equation $x^3 + 8x^2 + 3x - 6 = 0$.

(1 mark)

(c) By drawing a suitable straight line, solve the equation $x^3 + 5x + 2 = 0$ for $-1.5 \le x \le 1.5$.


 $X = \dots$

4 (a) The table shows some values for $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

X	0.125	0.25	0.375	0.5	0.75	1	1.5	2	2.5	3
У	5.25	1.5	0.42			0	0.67	1.5		3.33

Complete the table.

(b) On the grid, draw the graph of $y = 2x + \frac{1}{x} - 3$ for $0.125 \le x \le 3$.

(4 marks)

(c) Use your graph to solve $2x + \frac{1}{x} - 3 \ge 2$.

(3 marks)

- (d) The equation $\frac{1}{x} = 7 3x$ can be solved using your graph in **part** (b) and a straight line.
 - i) Write down the equation of this straight line.

[2]

- ii) Draw this straight line and solve the equation $\frac{1}{x} = 7 3x$.
 - $X = \dots$ or $X = \dots$ [3] (5 marks)