

GCSE · Edexcel · Maths

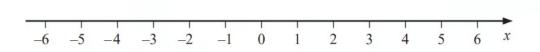
Exam Questions

Solving Inequalities

Solving Linear Inequalities / Solving Quadratic Inequalities

Total Marks	/161
Hard (14 questions)	/53
Medium (21 questions)	/65
Easy (16 questions)	/43

Scan here to return to the course or visit savemyexams.com

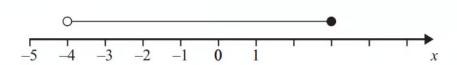


Easy Questions

1 (a) Solve 14n > 11n + 6

(2 marks)

(b) On the number line below, show the set of values of x for which $-2 < x + 3 \le 4$



2 (a) n is an integer.

 $-1 \le n \le 4$ List the possible values of n.

(2 marks)

(b)

Write down the inequality shown in the diagram.

(2 marks)

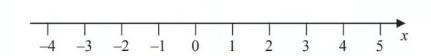
(c) Solve
$$y - 2 > 5$$

3 (a) $-3 < n \le 1$

n is an integer.

Write down all the possible values of n.

(2 marks)

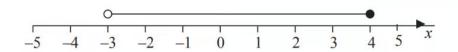

(b) Solve the inequality 3p-7 > 11

(2 marks)

4 Solve 3x - 5 < 16

(2 marks)

5 (a) Show the inequality x < 3 on the number line below


(2 marks)

(b) Solve the inequality $4x - 7 \ge 13$

6 (a) Solve the inequality 6y + 5 > 8

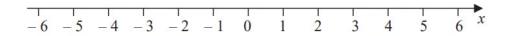
(2 marks)

(b) Here is an inequality, in *x*, shown on a number line.

Write down the inequality.

(2 marks)

$$7 - 4 \le 2y < 6$$


y is an integer.

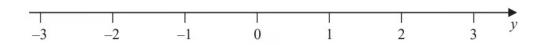
Write down all the possible values of y.

(2 marks)

8 (a) Solve the inequalities $-7 \le 2x - 3 < 5$

(b) On the number line, represent the solution set to part (a).

(1 mark)


9 Solve the inequality $5x - 7 \le 2$

(2 marks)

10 (a) n is an integer. Write down all the values of n such that $-2 \le n \le 3$

(2 marks)

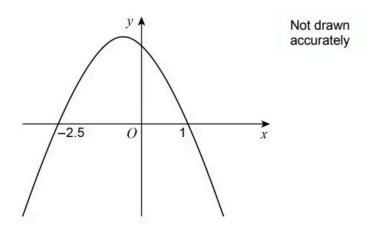
(b) On the number line, represent the inequality $y \leq 1$

(1 mark)

11 Solve 5(x + 3) < 60

(2 marks)

12 Solve -3x > 6


13 Choose the inequality shown by the diagram.

- **A.** $-4 \le x < 5$
- **B.** $-4 \le x \le 5$
- **C.** -4 < x < 5
- **D.** $-4 < x \le 5$

(1 mark)

14 Here is a sketch of y = f(x) where f(x) is a quadratic function. The graph intersects the *x*-axis where x = -2.5 and x = 1

Choose the solution of f(x) > 0

A.
$$x < -2.5$$
 or $x > 1$

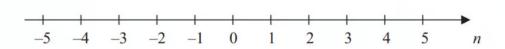
B.
$$x > -2.5$$
 or $x > 1$

C.
$$-2.5 < x < 1$$

D.
$$x > -2.5$$
 or $x < 1$

15 Solve the inequality.

$$3x - 2 > 10$$


(2 marks)

16 Write down the largest integer that satisfies 5x - 1 < 10.

Medium Questions

1 (a)
$$-2 < n \le 3$$

Represent this inequality on the number line.

(2 marks)

(b) Solve the inequality
$$8x - 3 \ge 6x + 4$$

2 (a)
$$-5 < y \le 0$$

y is an integer.

Write down all the possible values of y.

(2 marks)

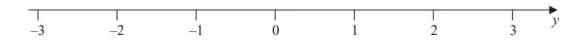
(b) Solve
$$6(x-2) > 15$$

3 (a) m is an integer such that $-2 < m \le 3$

Write down all the possible values of m.

(2 marks)

(b) Solve
$$7x - 9 < 3x + 4$$


4 (a) Solve 6x + 4 > x + 17

(2 marks)

(b) n is an integer with $-5 < 2n \le 6$

Write down all the values of n

5 (a) On the number line, show the inequality $-2 \leqslant y \leqslant 1$



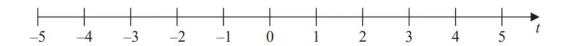
(2 marks)

(b) *n* is an integer.

Write down all the values of n that satisfy $-3.4 < n \leq 2$

6 (a)

Write down the inequality shown on the number line.


(1 mark)

(b) Solve the inequality
$$4y - 13 \le y + 8$$

7 (a) Solve the inequality $7t - 8 \le 2t + 7$

(3 marks)

(b) On the number line below, represent the solution set of the inequality solved in part (a).

(1 mark)

8 Solve the inequality $7t - 3 \le 2t + 31$

Show your working clearly.

(2 marks)

9 Solve the inequality 3x + 15 < 8x + 3

Show clear algebraic working.

(3 marks)

10 Solve the inequality $2q \ge 31 - 3q$

11 Solve
$$4 > 11 - \frac{x}{3}$$

(2 marks)

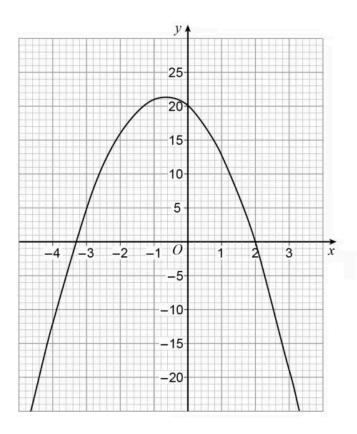
12 *x* is an integer.

$$-4 < x \le 2$$

and

$$2 \leq x + 3 < 9$$

Work out all the possible values of X.

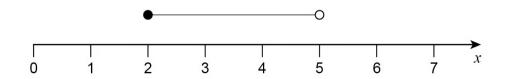

(3 marks)

13 Solve
$$8 > 3 - \frac{1}{2}x$$

(2 marks)

14 Solve
$$7x + 6 > 1 + 2x$$

15 Here is the graph of y = f(x) where f(x) is a quadratic function.



Write down all the **integer** solutions of $f(x) \ge 0$

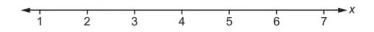
(2 marks)

16 (a) Solve
$$5x + 6 > 3x + 15$$

(b) Write down the inequality represented by the number line.

(2 marks)

17
$$m^2 > 9$$


Choose the possible value of m.

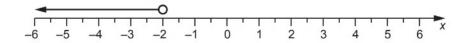
- **A.** $2\frac{7}{8}$
- **B.** 2.8
- **C.** 3
- **D.** $-\frac{7}{2}$

(1 mark)

18 Solve 3x+4 < 19.

Show your solution on the number line.

(4 marks)


19 Solve
$$3x - 5 \ge 10$$

Show your solution on the number line.

(4 marks)

20 Gemma's solution to the inequality 3x + 1 > -5

Is Gemma's solution correct? Explain your reasoning.

(3 marks)

21 Solve.

$$5x + 1 > x + 13$$

Hard Questions

1 Solve the inequality $x^2 > 3(x + 6)$

(4 marks)

2 Solve
$$x^2 > 3x + 4$$

(3 marks)

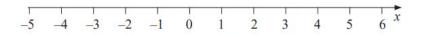
3 Solve
$$2x^2 + 3x - 2 > 0$$

(3 marks)

4
$$n$$
 is an integer such that $3n+2 \le 14$ and $\frac{6n}{n^2+5} > 1$

Find all the possible values of n.

(5 marks)


5 Solve the inequality $4x^2 - 5x - 6 > 0$

(4 marks)

6 (a) Solve
$$x^2 + 2x > 6x + 5$$

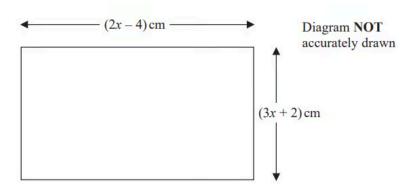
(3 marks)

(b) Represent your solution set to part (a) on the number line below.

(1 mark)

7 Here is a rectangle.

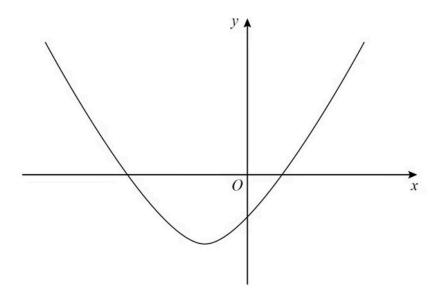
$$(2x + 3) \text{ cm}$$
Diagram **NOT**
accurately drawn
$$(x - 1) \text{ cm}$$


Given that the area of the rectangle is less than 75 cm^2 find the range of possible values of X

(5 marks)

8 Solve the inequality $5y^2 - 17y \le 40$

(3 marks)


9 The diagram shows a rectangle.

The area of the rectangle is $A\,\mathrm{cm}^2$ Given that A < 3x + 27find the range of possible values for X.

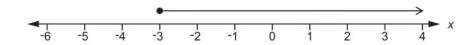
(5 marks)

10 Here is a sketch of the curve $y = x^2 + 4x - 12$

Work out the values of *x* for which $x^2 + 4x - 12 < 0$

Give your answer as an inequality.

(3 marks)


11 Here are two inequalities.

$$-2 \le x \le 3$$
$$9 \le x + y \le 11$$

 \boldsymbol{x} and \boldsymbol{y} are integers.

Work out the **greatest** possible value of y - x

12 Martha's solution to the inequality $8x + 5 \le 3x - 10$ is shown on the number line.

Is her solution correct? Explain your reasoning.

(4 marks)

13 Solve the inequality.

$$x^2 - 5x - 6 \le 0$$

(4 marks)

14 Find the interval for which $x^2 - 7x + 10 \le 0$.

 $X \leq X \leq X$ (3 marks)