

IGCSE · Cambridge (CIE) · Maths

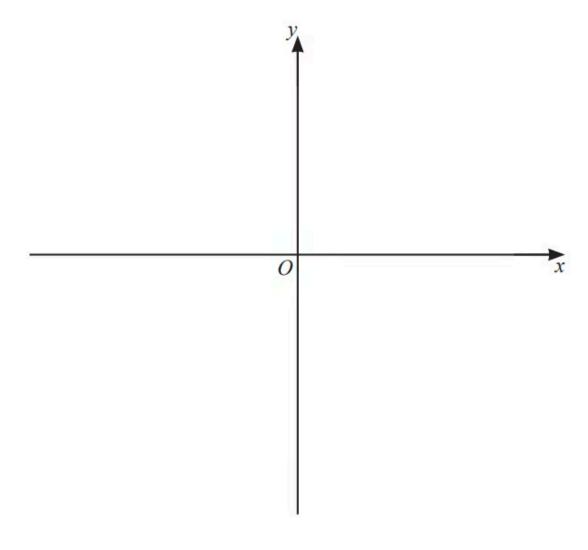
Non-Calculator Questions

Further Graphs & **Tangents**

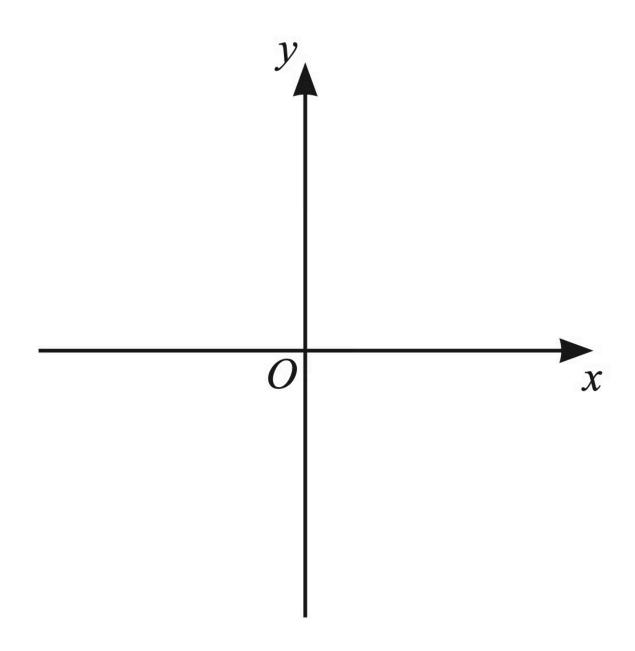
Types of Graphs / Drawing Graphs from Tables / Solving Equations from Graphs / Finding Gradients of Tangents

Total Marks	/127
Very Hard (3 questions)	/44
Hard (5 questions)	/59
Medium (7 questions)	/24

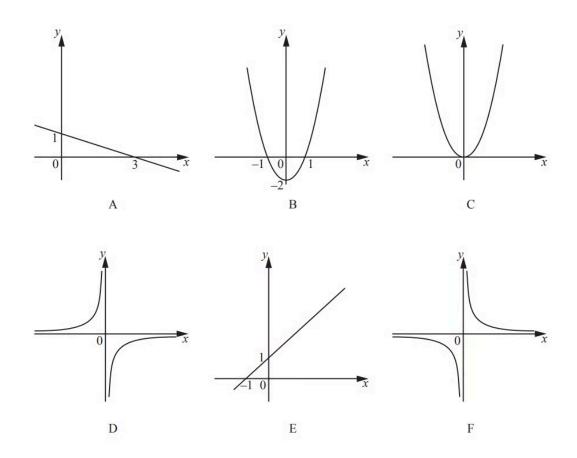
Scan here to return to the course or visit savemyexams.com



Medium Questions


1 On the diagram, sketch the graph of $y = (x + 1)(x - 3)^2$.

Label the values where the graph meets the x-axis and the y-axis.


(4 marks)

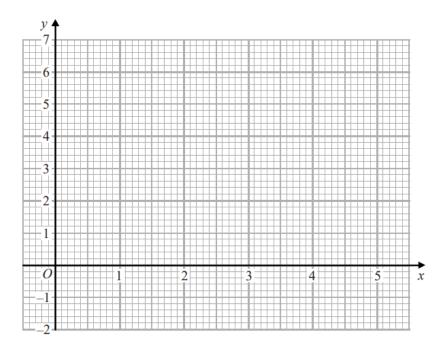
2 Sketch the graph of the function.

(2 marks)

3 The diagrams A, B, C, D, E and F are six graphs of different functions.

Complete the table to identify the correct graph for each function. One has been done for you.

Function	y = x + 1	$y = 1 - \frac{x}{3}$	$y = 2x^2$	$y = -\frac{4}{x}$
Diagram	Е			

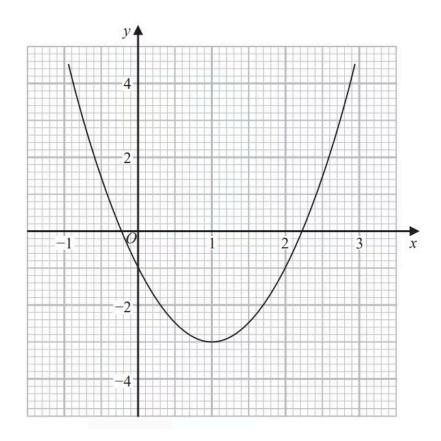

(3 marks)

4 (a) Complete the table of values for $y = x^2 - 5x + 6$

X	0	1	2	3	4	5
У	6		0	0	2	

(1 mark)

(b) On the grid, draw the graph of $y = x^2 - 5x + 6$ for $0 \le x \le 5$


(2 marks)

(c) By drawing a suitable straight line on the grid, find estimates for the solutions of the equation

$$x^2 - 5x = x - 7$$

(3 marks)

5 (a) Part of the graph of $y = 2x^2 - 4x - 1$ is shown on the grid.

Use the graph to find estimates for the solutions of the equation $2x^2 - 4x - 1 = 0$ Give your solutions correct to one decimal place.

(2 marks)

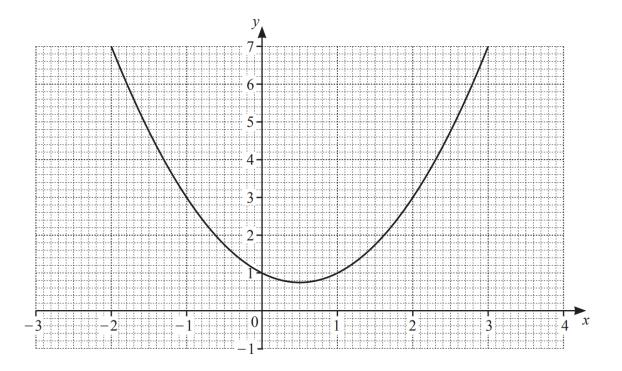
(b) By drawing a suitable straight line on the grid, find estimates for the solutions of the equation $x^2 - x - 1 = 0$

Show your working clearly.

Give your solutions correct to one decimal place.

(3 marks)

6 The curve $y = x^2 - 2x + 1$ is drawn on a grid.


A line is drawn on the same grid.

The points of intersection of the line and the curve are used to solve the equation $x^2 - 7x + 5 = 0$.

Find the equation of the line in the form y = mx + c.

(1 mark)

7 The graph of $y = x^2 - x + 1$ is shown on the grid.

By drawing a suitable line on the grid, solve the equation $x^2 - 2x - 2 = 0$.

$$x =$$
 or $x =$ (3 marks)

Hard Questions

1 (a)

$$f(x) = x(x + 2)(x - 3)$$

On the diagram, sketch the graph of y = f(x) for $-3 \le x \le 4$ Show the values of the intersections with the axes.

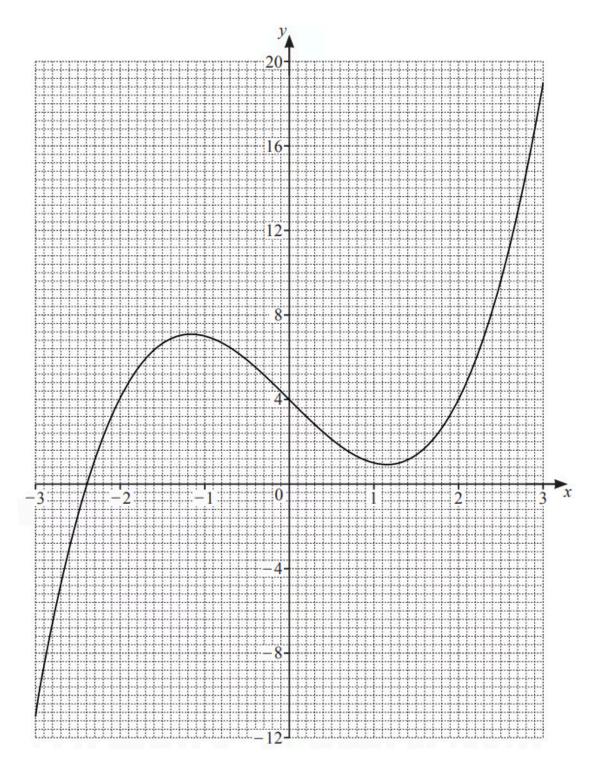
(3 marks)

(b) Expand and simplify.

$$x(x+2)(x-3)$$

(3 marks)

(c) A is the point (1, -6).


The tangent to the graph of y = f(x) at A meets the y-axis at B.

Find the coordinates of B.

(5 marks)

2 (a) The diagram shows the graph of y = f(x) for $-3 \le x \le 3$.

i) Solve f(x) = 14.

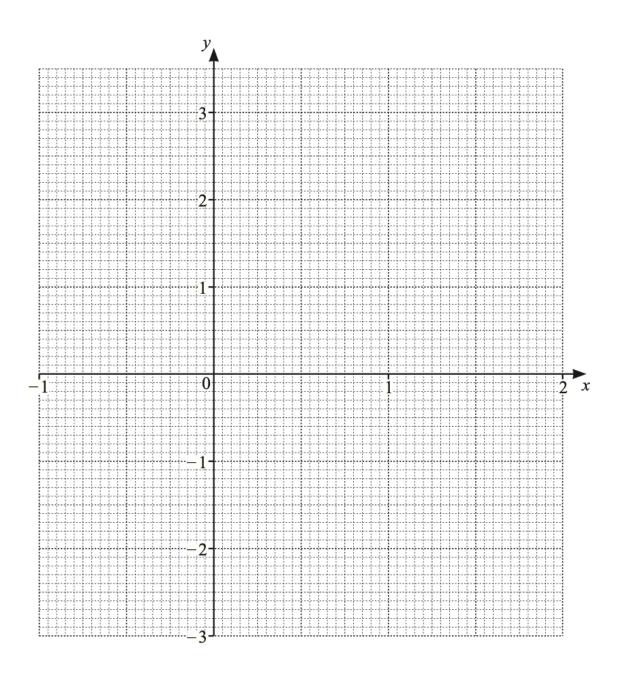
$$X = \dots [1]$$

ii) By drawing a suitable tangent,	find an estimate of the gradient of the graph at the
point $(-2, 4)$.	

[3] (4 marks)

(b) By drawing a suitable straight line on the grid, solve f(x) = 2x - 2 for $-3 \le x \le 3$.

(3 marks)


3 (a) The table shows some values for $y = 2x^3 - 4x^2 + 3$.

X	-1	-0.5	0	0.5	1	1.5	2
У	-3	1.75				0.75	3

Complete the table.

(3 marks)

(b) Draw the graph of $y = 2x^3 - 4x^2 + 3$ for $-1 \le x \le 2$.

(4 marks)

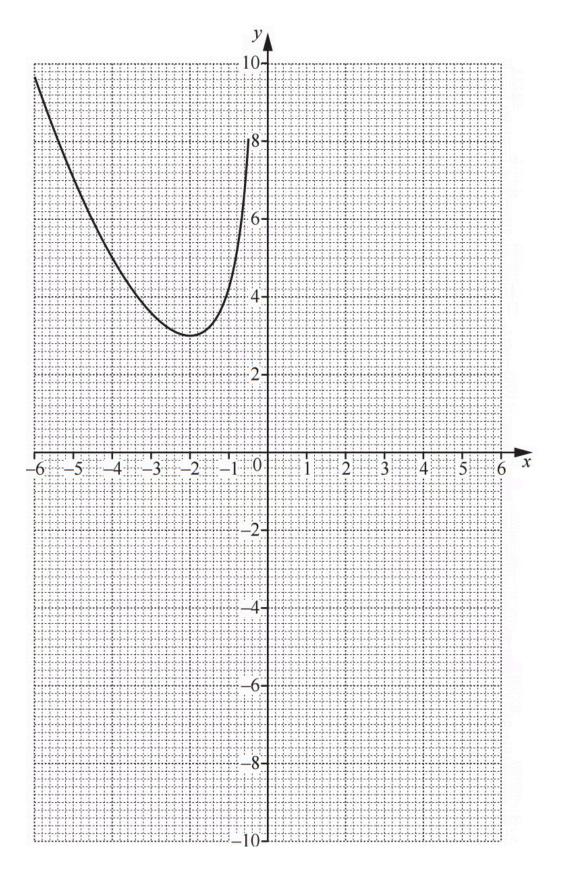
(c) i) Use your graph to solve the equation $2x^3 - 4x^2 + 3 = 1.5$.

$$X = \dots$$
 or $X = \dots$ [3]

ii) The equation $2x^3 - 4x^2 + 3 = k$ has only one solution for $-1 \le x \le 2$.

Write down a possible integer value of k.

(4 marks)



4 (a) $f(x) = \frac{x^2}{4} - \frac{4}{x}$, $x \neq 0$ Complete the table for f(x).

X	0.5	1	2	3	4	5	6
f(x)	-7.9	-3.8		0.9		5.5	8.3

(2 marks)

(b) The graph of y = f(x) for $-6 \le x \le -0.5$ is drawn on the grid.

On the same grid, draw the graph of y = f(x) for $0.5 \le x \le 6$.

(c) By drawing a suitable tangent, estimate the gradient of the graph of y = f(x) at the point (-4, 5).

(3 marks)

(d)
$$g(x) = \frac{9}{x}$$
, $x \neq 0$ Complete the table for $g(x)$.

X	-4	-3	-2	-1	1	2	3	4
g(x)	-2.3		-4.5	-9	9	4.5		2.3

(1 mark)

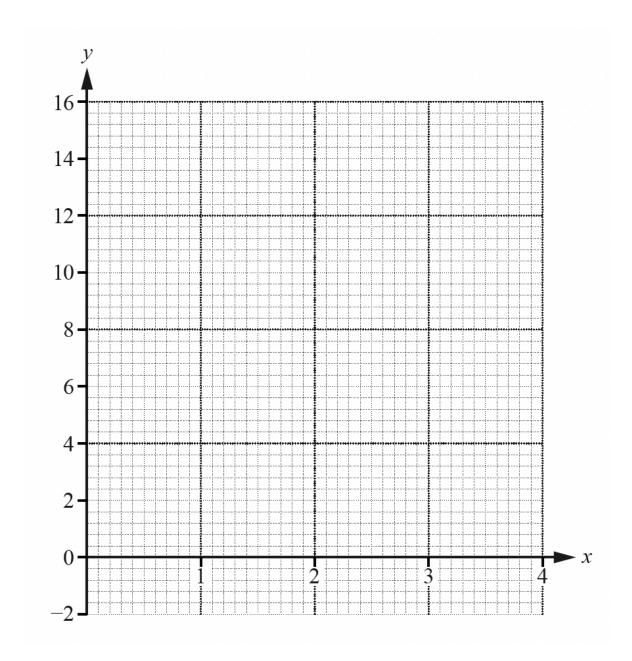
- (e) On the same grid, draw the graph of y = g(x) for $-4 \le x \le -1$ and $1 \le x \le 4$. (4 marks)
- (f) i) Use your graphs to find the value of x when f(x) = g(x).

ii) Write down an inequality to show the **positive** values of x for which f(x) > g(x).

[1]

(2 marks)

5 (a) i) $y = 2^x$ Complete the table


X	0	1	2	3	4
У		2	4	8	

[2]

ii) $y = 14 - x^2$ Complete the table

X	0	1	2	3	4
y		13	10	5	

[2] (4 marks) **(b)** On the grid, draw the graphs of $y = 2^x$ and $y = 14 - x^2$ for $0 \le x \le 4$.

(6 marks)

(c) Use your graphs to solve the equations.

i)
$$2^x = 12$$

$$X = \dots [1]$$

ii)
$$2^x = 14 - x^2$$

X =		[1	1	
/1	•••••	L	٠.	J

(2 marks)

(d) i) On the grid, draw the line from the point (4, 2) that has a gradient of -4.

[1]

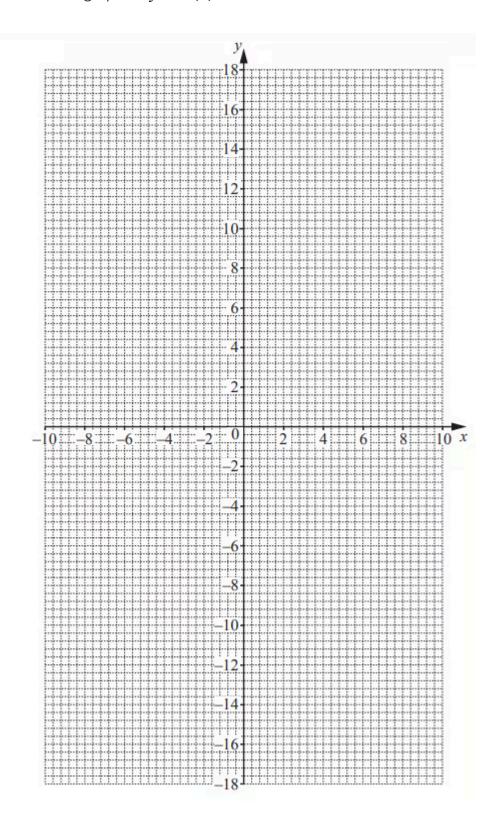
ii) Complete the statement.

This straight line is a to the graph of $y = 14 - x^2$ at the point (......,).

[2]

(3 marks)

Very Hard Questions


1 (a)
$$f(x) = \frac{20}{x} + x$$
, $x \neq 0$

Complete the table.

X	-10	-8	-5	-2	-1.6	1.6	2	5	8	10
f(x)	-12	-10.5	-9	-12	-14.1	14.1	12			12

(2 marks)

(b) On the grid, draw the graph of y = f(x) for $-10 \le x \le -1.6$ and $1.6 \le x \le 10$.

(5 marks)

(c) Using your graph, solve the equation f(x) = 11.

X = or X =

(2 marks)

(d) k is a prime number and f(x) = k has no solutions.

Find the possible values of k.

(2 marks)

(e) The gradient of the graph of y = f(x) at the point (2, 12) is -4.

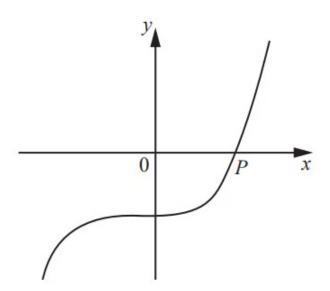
Write down the coordinates of the other point on the graph of y = f(x) where the gradient is -4.

(.....)

(1 mark)

(f) i) The equation $f(x) = x^2$ can be written as $x^3 + px^2 + q = 0$.

Show that p = -1 and q = -20.


[2]

ii) On the grid, draw the graph of $y = x^2$ for $-4 \le x \le 4$.

[2]

iii) Using your graphs, solve the equation $x^3 - x^2 - 20 = 0$.

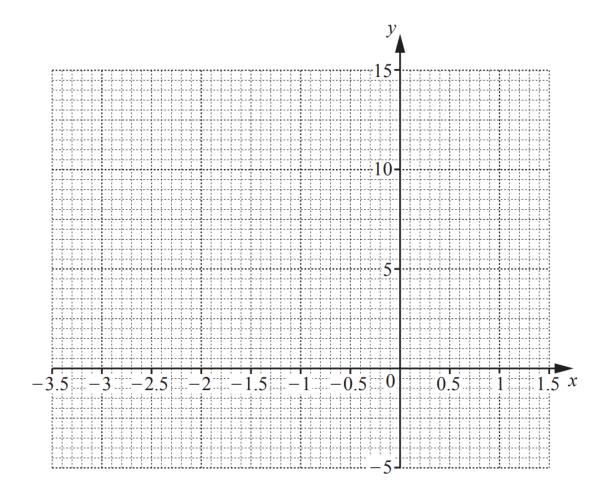
iv)

NOT TO **SCALE**

The diagram shows a **sketch** of the graph of $y = x^3 - x^2 - 20$. P is the point (n, 0). Write down the value of n.

$$n = \dots [1]$$

(6 marks)


2 (a) The table shows some values for $y = x^3 + 3x^2 + 2$.

X	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5
У	-4.1		5.1	6	5.4	4	2.6		2.9		12.1

Complete the table.

(3 marks)

(b) On the grid, draw the graph of $y = x^3 + 3x^2 + 2$ for $-3.5 \le x \le 1.5$.

(4 marks)

(c) Use your graph to solve the equation $x^3 + 3x^2 + 2 = 0$ for $-3.5 \le x \le 1.5$.

X =

(1 mark)

(d) By drawing a suitable straight line, solve the equation $x^3 + 3x^2 + 2x + 2 = 0$ for $-3.5 \le x \le 1.5$.

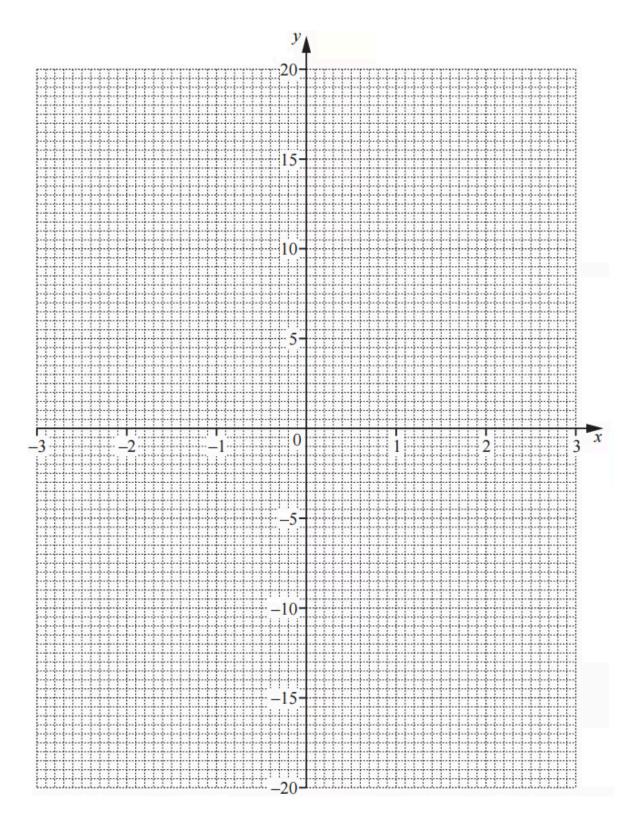
(2 marks)

(e) For $-3.5 \le x \le 1.5$, the equation $x^3 + 3x^2 + 2 = k$ has three solutions and k is an integer.

Write down a possible value of k.

k =

(1 mark)


3 (a) The table shows some values of $y = x^3 - 3x - 1$.

X	-3	-2.5	-2	-1.5	-1	0	1	1.5	2	2.5	3
У	-19	-9.1		0.1	1	-1	-3	-2.1	1	7.1	

Complete the table of values.

(2 marks)

(b) Draw the graph of $y = x^3 - 3x - 1$ for $-3 \le x \le 3$.

(4 marks)

(c)	A straight line through $(0, -17)$ is a tangent to the graph of	$y = x^3 - 3x - 1.$	
-----	---	---------------------	--

i) On the grid, draw this tangent.

[1]

ii) Find the co-ordinates of the point where the tangent meets your graph.

(.....) [1]

iii) Find the equation of the tangent. Give your answer in the form y = mx + c.

(d) By drawing a suitable straight line on the grid, solve the equation $x^3 - 6x - 3 = 0$.

$$X =$$
 or $X =$ or $X =$ (4 marks)