

GCSE · Edexcel · Maths

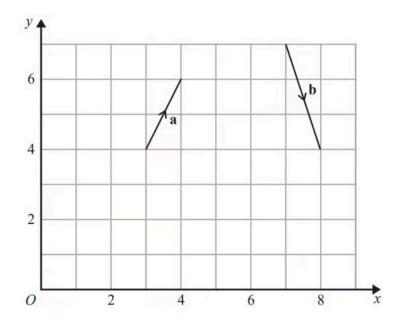
3 hours **?** 50 questions

Exam Questions

Vectors

Introduction to Column Vectors / Representing Vectors as Diagrams / Length of a Vector / Position & Displacement Vectors / Finding Vector Paths / Problem Solving with Vectors

Total Marks	/193		
Very Hard (15 questions)	/69		
Hard (19 questions)	/78		
Medium (16 questions)	/46		


Scan here to return to the course or visit savemyexams.com

Medium Questions

1 (a) The vector \mathbf{a} and the vector \mathbf{b} are shown on the grid.

On the grid, draw and label vector $-2\mathbf{a}$

(1 mark)

(b) Work out $\mathbf{a} + 2\mathbf{b}$ as a column vector.

(2 marks)

2 (a)

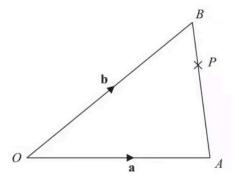


Diagram NOT accurately drawn

OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{OB} = \mathbf{b}$$

Find \overrightarrow{AB} in terms of \mathbf{a} and \mathbf{b} .

(1 mark)

(b) P is the point on AB such that AP: PB = 3:1

Find \overrightarrow{OP} in terms of **a** and **b**.

Give your answer in its simplest form.

(3 marks)

3 (a)

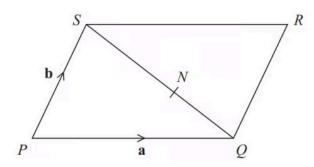


Diagram NOT accurately drawn

PQRS is a parallelogram.

N is the point on SQ such that SN:NQ=3:2

$$\overrightarrow{PQ} = \mathbf{a}$$

$$\overrightarrow{PS} = \mathbf{b}$$

Write down, in terms of \mathbf{a} and \mathbf{b} , an expression for \overrightarrow{SQ} .

(1 mark)

(b) Express \overrightarrow{NR} in terms of **a** and **b**.

(3 marks)

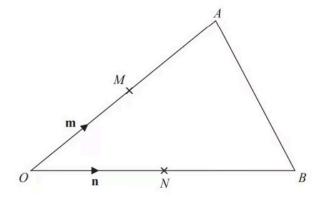


Diagram NOT accurately drawn

 $O\!AB$ is a triangle.

M is the midpoint of OA.

N is the midpoint of OB.

$$\overrightarrow{OM} = \mathbf{m}$$

$$\overrightarrow{ON} = \mathbf{n}$$

Show that AB is parallel to MN.

(3 marks)

5 (a)

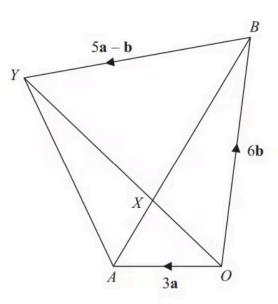


Diagram NOT accurately drawn

OAYB is a quadrilateral.

$$\overrightarrow{OA} = 3\mathbf{a}$$

$$\overrightarrow{OB} = 6\mathbf{b}$$

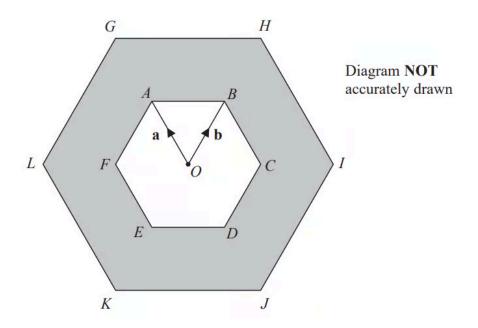
Express \overrightarrow{AB} in terms of **a** and **b**.

(1 mark)

(b) X is the point on AB such that AX: XB = 1:2 and $\overrightarrow{BY} = 5\mathbf{a} - \mathbf{b}$

Prove that
$$\overrightarrow{OX} = \frac{2}{5} \overrightarrow{OY}$$

(4 marks)


6 Here are two vectors.

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \qquad \overrightarrow{CB} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

Find, as a column vector, \overrightarrow{AC}

(2 marks)

7 ABCDEF and GHIJKL are regular hexagons each with centre O.

 \emph{GHIJKL} is an enlargement of \emph{ABCDEF} , with centre \emph{O} and scale factor 2

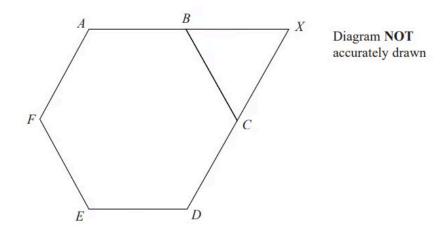
$$\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$$

Write the following vectors, in terms of \mathbf{a} and \mathbf{b} . Simplify your answers.

i)
$$\overrightarrow{AB}$$

[1]

ii) $\overrightarrow{K}I$

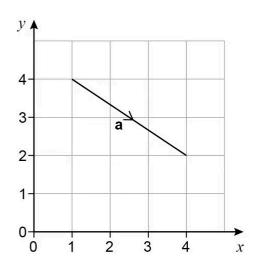

[2]

iii) \overrightarrow{LD}

[2]

(1 mark)

8 ABCDEF is a regular hexagon.


ABX and DCX are straight lines.

$$\overrightarrow{AB} = \mathbf{a}$$
 $\overrightarrow{BC} = \mathbf{b}$

Find \overrightarrow{EX} in terms of **a** and **b**. Give your answer in its simplest form.

(4 marks)

9 Here is vector **a**.

Choose the column vector that represents **a**.

A.
$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\mathbf{B.} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$\mathbf{c}.\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\mathbf{D.} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

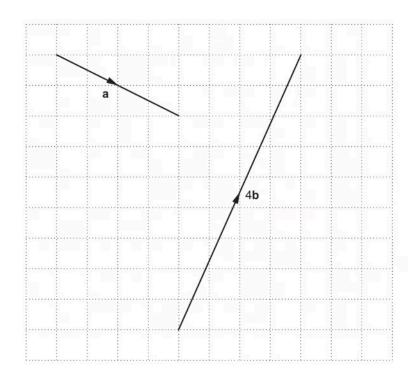
(1 mark)

10
$$\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

Work out $\mathbf{a} - 3\mathbf{b}$

$$\mathbf{A.} \begin{pmatrix} -6 \\ 17 \end{pmatrix}$$

$$\mathbf{B.} \begin{pmatrix} -6 \\ -13 \end{pmatrix}$$


$$\mathbf{c.} \begin{pmatrix} 0 \\ 17 \end{pmatrix}$$

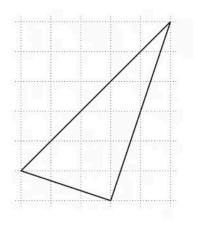
$$\mathbf{C.} \begin{pmatrix} 0 \\ 17 \end{pmatrix}$$

$$\mathbf{D.} \begin{pmatrix} 0 \\ -13 \end{pmatrix}$$

(1 mark)

11 (a) Vectors \mathbf{a} and $4\mathbf{b}$ are drawn on the grid.

Write vector **a** as a column vector.


(2 marks)

(b) Find vector **b** as a column vector.

(2 marks)

12 Vector
$$\mathbf{a} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

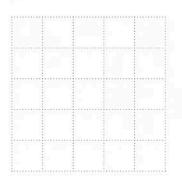
Gavin starts to draw a diagram to show that $\mathbf{a} + 2\mathbf{b} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$

Complete Gavin's diagram.

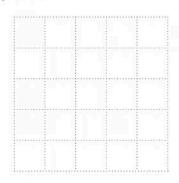
(3 marks)

13 b is a vector.

Given that $\mathbf{b} + \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ is parallel to $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, find two possible answers for \mathbf{b} .


$$\mathbf{b} = \begin{pmatrix} \\ \\ \end{pmatrix} \text{or} \begin{pmatrix} \\ \\ \end{pmatrix}$$

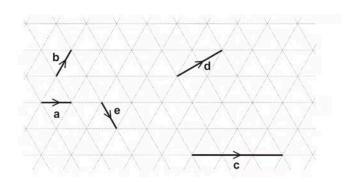
(3 marks)


14 (a) Vector
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, vector $\mathbf{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

On each grid below, draw a vector to represent

(i) 2a,

(ii) a + b.


(2 marks)

(b) Emma says that if she draws vector \boldsymbol{a} and vector \boldsymbol{b} they will be the same.

Explain why this is incorrect.

(1 mark)

15 Vectors **a**, **b**, **c**, **d** and **e** are drawn on an isometric grid.

Write each of the vectors **c**, **d** and **e** in terms of **a** and/or **b**.

c =

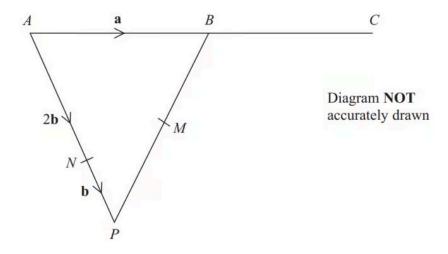
d =

e =

(3 marks)

$$\mathbf{16} \ \mathbf{a} = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \mathbf{b} = \begin{pmatrix} p \\ 5 \end{pmatrix}$$

a and **b** are column vectors.


$$2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 7 \\ 9 \end{pmatrix}$$

Find the value of p.

(2 marks)

Hard Questions

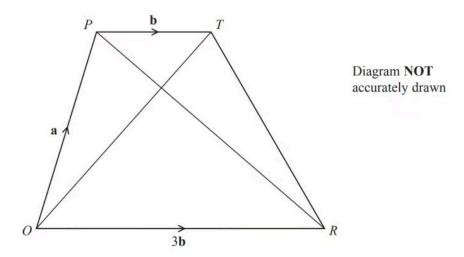
1 (a)

APB is a triangle. N is a point on AP.

$$\overrightarrow{AB} = \mathbf{a}$$
 $\overrightarrow{AN} = 2\mathbf{b}$ $\overrightarrow{NP} = \mathbf{b}$

$$\overrightarrow{NP} = \mathbf{b}$$

Find the vector \overrightarrow{PB} , in terms of **a** and **b**.


(1 mark)

(b) B is the midpoint of AC. M is the midpoint of PB.

Show that NMC is a straight line.

(4 marks)

2 (a)

OPTR is a trapezium.

$$\overrightarrow{OP} = \mathbf{a}$$

$$\overrightarrow{PT} = \mathbf{b}$$

$$\overrightarrow{OR} = 3\mathbf{b}$$

i) Find \overrightarrow{OT} in terms of **a** and **b**

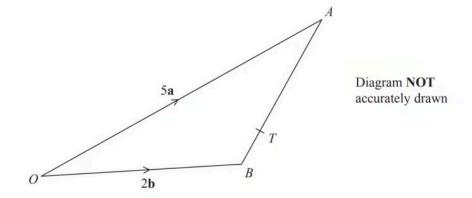
[1]

ii) Find \overrightarrow{PR} in terms of ${\bf a}$ and ${\bf b}$ Give your answer in its simplest form.

[1]

(2 marks)

(b) S is the point on PR such that PS: SR = 1:3


Find \overrightarrow{OS} in terms of **a** and **b**. Give your answer in its simplest form.

(2 marks)

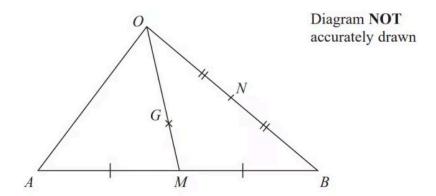
(c) What does your answer to part (b) tell you about the position of point S?

(2 marks)

3

OAB is a triangle.

$$\overrightarrow{OA} = 5\mathbf{a}$$


$$\overrightarrow{OB} = 2\mathbf{b}$$

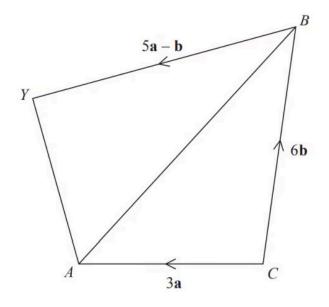
T is the point on AB such that AT: TB = 5:1

Show that OT is parallel to the vector $\mathbf{a} + 2\mathbf{b}$

(4 marks)

4 (a)

 $\overrightarrow{OA} = 6\mathbf{a}$ and $\overrightarrow{OB} = 6\mathbf{b}$ ${\it M}$ is the midpoint of ${\it AB}$.


Write \overrightarrow{OM} in terms of **a** and **b**. Give your answer in its simplest form.

(2 marks)

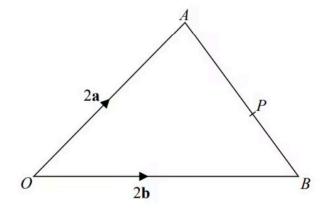
(b) N is the midpoint of OB. G is the point on OM such that OG: GM= 2:1

Show that AGN is a straight line.

(4 marks)

CAYB is a quadrilateral.

$$\overrightarrow{CA} = 3\mathbf{a}$$


$$\overrightarrow{CB} = 6\mathbf{b}$$

$$\overrightarrow{BY} = 5\mathbf{a} - \mathbf{b}$$

X is the point on AB such that AX:XB = 1:2

Prove that
$$\overrightarrow{CX} = \frac{2}{5} \overrightarrow{CY}$$

(5 marks)

 $O\!AB$ is a triangle.

P is the point on AB such that AP: PB = 5:3

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 2\mathbf{b}$$

$$\overrightarrow{OP} = k(3\mathbf{a} + 5\mathbf{b})$$
 where k is a scalar quantity.

Find the value of k.

(4 marks)

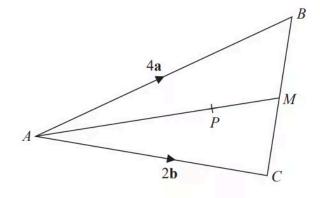


Diagram NOT accurately drawn

ABC is a triangle.

The midpoint of BC is M.

P is a point on AM.

$$\overrightarrow{AB} = 4\mathbf{a}$$

$$\overrightarrow{AC} = 2\mathbf{b}$$

$$\overrightarrow{AP} = \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

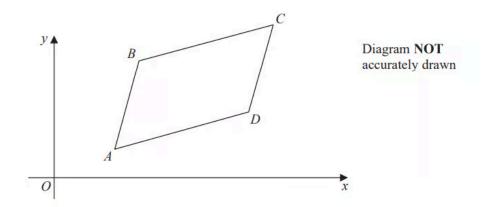
Find the ratio AP: PM

(3 marks)

8 OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{OB} = \mathbf{b}$$


The point C lies on OA such that OC: CA = 1:2

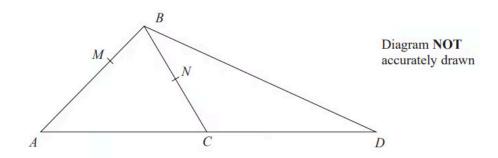
The point D lies on OB such that OD:DB=1:2

Using a vector method, prove that ABDC is a trapezium.

(3 marks)

9 (a) The diagram shows parallelogram ABCD.

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$


The point B has coordinates (5, 8) Work out the coordinates of the point C.

(3 marks)

(b) The point E has coordinates (63, 211) Use a vector method to prove that ABE is a straight line.

(2 marks)

10 (a) The diagram shows triangle ABD.

N is the midpoint of BC.

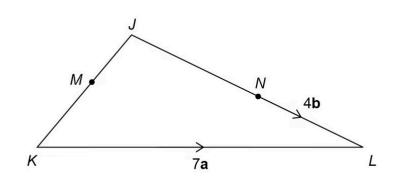
 ${\it C}$ is the midpoint of ${\it AD}$.

M is the point on AB such that AM:MB = 3:1

$$\overrightarrow{AB} = \mathbf{p}$$
 and $\overrightarrow{AC} = \mathbf{q}$

Express, in terms of \mathbf{p} and \mathbf{q} ,

- i) \overrightarrow{BD}
- ii) \overrightarrow{MN}


(3 marks)

(b) State, giving reasons, two different geometric facts relating MN and BD.

(2 marks)

11 In triangle JKL

M is the midpoint of JK JN : NL = 3 : 2 $\overrightarrow{KL} = 7\mathbf{a}$ $\overrightarrow{NL} = 4\mathbf{b}$

Not drawn accurately

Work out \overrightarrow{JM} in terms of \mathbf{a} and \mathbf{b} .

Give your answer in its simplest form.

(3 marks)

12 PQR is a straight line.

$$PQ: QR = 3:1$$

$$\overrightarrow{PQ} = \mathbf{a}$$

Not drawn accurately

Choose the vector \overrightarrow{RQ}

A.
$$\frac{1}{3}$$
a

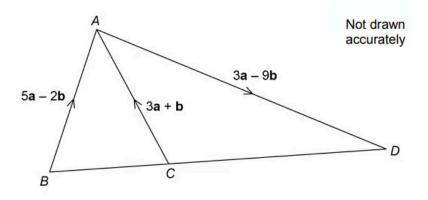
B.
$$\frac{1}{4}$$
a

C.
$$-\frac{1}{3}$$
a

D.
$$-\frac{1}{4}$$
a

(1 mark)

13 (a)
$$\mathbf{a} = \begin{pmatrix} 6 \\ -10 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} -4 \\ 7 \end{pmatrix}$


Work out a + b + c

(2 marks)

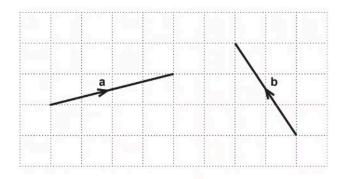
(b) Show that $\mathbf{a} + 2\mathbf{c}$ is parallel to \mathbf{b}

(2 marks)

14

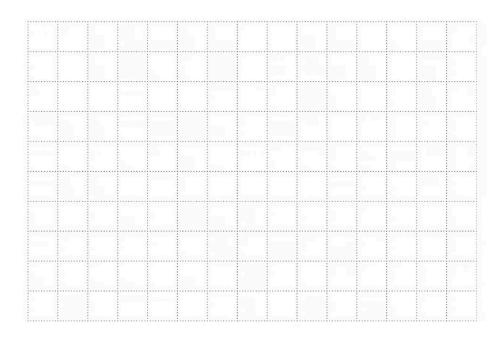
Is *BCD* a straight line? Show working to support your answer. **15** Given that

$$m\binom{4}{1} + n\binom{5}{2} = \binom{12}{6}$$


find the value of m and the value of n.

m =

n =

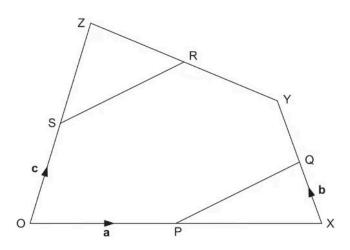

(5 marks)

16 Two vectors, **a** and **b**, are shown on the 1 centimetre grid below.

Show that the vector $\mathbf{a} + 2\mathbf{b}$ has length 7cm.

You may use the grid below.

(3 marks)

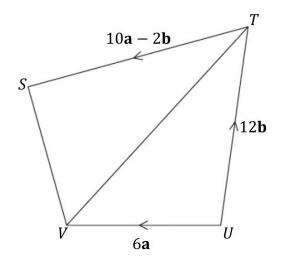

17 Vector
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, vector $\mathbf{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ and vector $\mathbf{c} = \begin{pmatrix} -12 \\ 0 \end{pmatrix}$

Find the value k so that $k(\mathbf{a} - \mathbf{b}) = \mathbf{c}$

1_		
K	=	

(2 marks)

18 P, Q, R and S are the midpoints of OX, XY, YZ and OZ respectively.



$$\overrightarrow{OP}$$
 = \mathbf{a} , \overrightarrow{XQ} = \mathbf{b} and \overrightarrow{OS} = \mathbf{c} .

Show that PQ is parallel to SR.

(5 marks)

19 (a) STUV is a quadrilateral.

$$\overrightarrow{TS} = 10\mathbf{a} - 2\mathbf{b}$$

$$\overrightarrow{UT} = 12\mathbf{b}$$

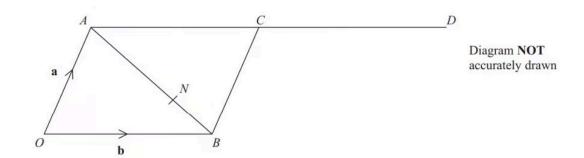
$$\overrightarrow{UV} = 6a$$

W is the point on VT such that VW: WT = 1:2.

Prove that
$$\overrightarrow{UW} = \frac{2}{3} \overrightarrow{WS}$$

You must show all your working.

(4 marks)

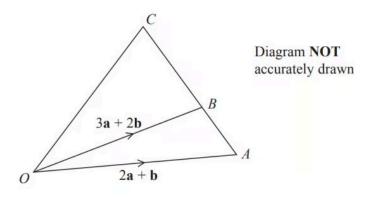

(b) State two different facts about the geometric relationship between the point $U,\,W$ and S.

(2 marks)

Very Hard Questions

1 (a) OACB is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}$$


D is the point such that $\overrightarrow{AC} = \overrightarrow{CD}$ The point N divides AB in the ratio 2:1

Write an expression for \overrightarrow{ON} in terms of **a** and **b**.

(3 marks)

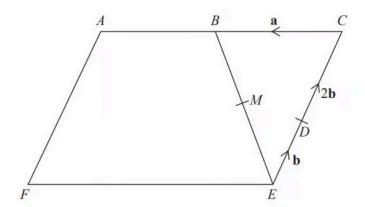
(b) Prove that OND is a straight line.

(3 marks)

ABC is a straight line.

$$AB : BC = 2:5$$

$$\overrightarrow{OA} = 2\mathbf{a} + \mathbf{b}$$


$$\overrightarrow{OB} = 3\mathbf{a} + 2\mathbf{b}$$

Express \overrightarrow{OC} in terms of \mathbf{a} and \mathbf{b} .

Give your answer in its simplest form.

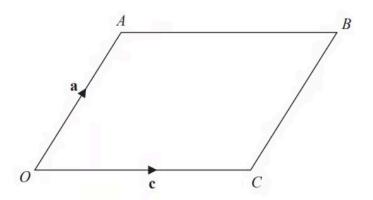
(4 marks)

Diagram NOT accurately drawn

 $AC\!E\!F$ is a parallelogram.

 ${\it B}$ is the midpoint of ${\it AC}$.

 $\it M$ is the midpoint of $\it BE$.

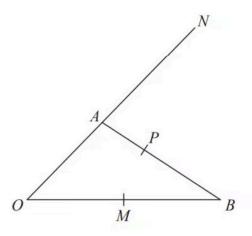

$$\overrightarrow{CB} = \mathbf{a}$$

$$\overrightarrow{ED} = \mathbf{b}$$

$$\overrightarrow{DC} = 2b$$

Show that AMD is a straight line.

(5 marks)


$$\overrightarrow{OABC}$$
 is a parallelogram.
 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$

X is the midpoint of the line AC.

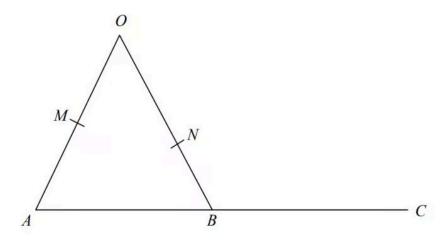
OCD is a straight line so that OC: CD = k: 1

Given that $\overrightarrow{XD} = 3\mathbf{c} - \frac{1}{2}\mathbf{a}$ find the value of k.

(4 marks)

OAN, OMB and APB are straight lines.

$$AN = 2OA$$
.


 ${\it M}$ is the midpoint of ${\it OB}$.

$$\overrightarrow{OA} = \mathbf{a}$$
 $\overrightarrow{OB} = \mathbf{b}$

 $\overrightarrow{AP} = \overrightarrow{kAB}$ where k is a scalar quantity.

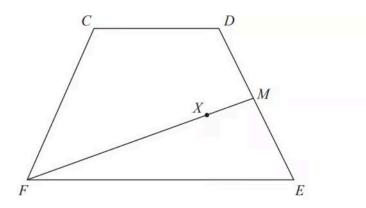
Given that MPN is a straight line, find the value of k.

(5 marks)

 \emph{OMA} , \emph{ONB} and \emph{ABC} are straight lines.

M is the midpoint of OA.

 ${\it B}$ is the midpoint of ${\it AC}$.


$$\overrightarrow{OA} = 6\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{ON} = k\mathbf{b}$

where k is a scalar quantity.

Given that MNC is a straight line, find the value of k.

(5 marks)

7 (a) CDEF is a quadrilateral.

$$\overrightarrow{CD} = \mathbf{a}$$
, $\overrightarrow{DE} = \mathbf{b}$ and $\overrightarrow{FC} = \mathbf{a} - \mathbf{b}$.

Express \overrightarrow{FE} in terms of **a** and/or **b**. Give your answer in its simplest form.

(2 marks)

(b) M is the midpoint of DE. X is the point on FM such that FX:XM = n:1*CXE* is a straight line.

Work out the value of n.

(4 marks)

8 The diagram shows triangle $O\!AB$

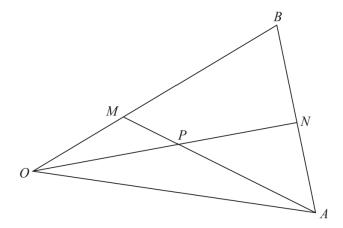
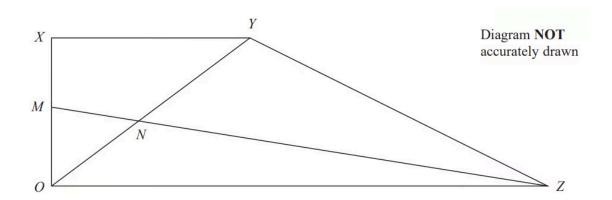


Diagram NOT accurately drawn

$$\overrightarrow{OA} = 8\mathbf{a} \quad \overrightarrow{OB} = 6\mathbf{b}$$

M is the point on OB such that OM:MB = 1:2

N is the midpoint of AB


 \it{P} is the point of intersection of \it{ON} and \it{AM}

Using a vector method, find \overrightarrow{OP} as a simplified expression in terms of $\bf a$ and $\bf b$ Show your working clearly.

→						
OP=						
()[-	 	 	 	 	 	

(5 marks)

9 OXYZ is a trapezium.

$$\overrightarrow{OX} = \mathbf{a}$$

$$\overrightarrow{XY} = \mathbf{b}$$

$$\overrightarrow{OZ} = 3\mathbf{b}$$

 ${\it M}$ is the midpoint of ${\it OX}$

N is the point such that $M\!N\!Z$ and $O\!N\!Y$ are straight lines.

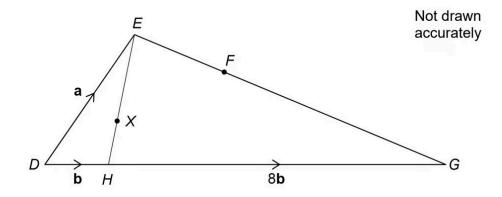
Given that $ON: OY = \lambda:1$

use a vector method to find the value of λ

$\lambda =$	

(5 marks)

10 (a) In the diagram


$$\overrightarrow{DE} = \mathbf{a}$$

$$\overrightarrow{DH} = \mathbf{b}$$

$$\overrightarrow{HG} = 8\mathbf{b}$$

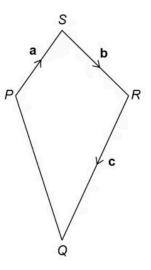
$$EX: XH = 3:1$$

$$EF:FG = 1:3$$

Show that
$$\overrightarrow{DX} = \frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

(2 marks)

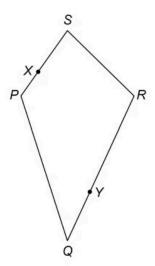
(b) Is DXF a straight line?


Show working to support your answer.

(4 marks)

11 Here is quadrilateral PQRS.

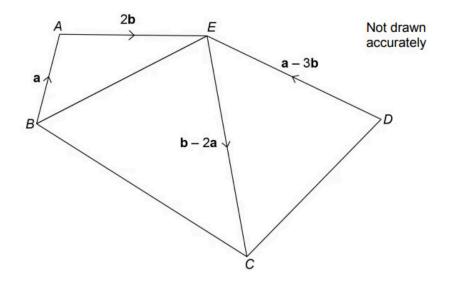
$$\overrightarrow{PS} = \mathbf{a}$$
 $\overrightarrow{SR} = \mathbf{b}$ $\overrightarrow{RQ} = \mathbf{c}$


 \overrightarrow{PS} and \overrightarrow{QR} are not parallel.

Not drawn accurately

X is a point on PS where PX: XS = 1:2

 \boldsymbol{Y} is a point on \boldsymbol{RQ} where RY: YQ = 2:1



Not drawn accurately

Is XY parallel to PQ?

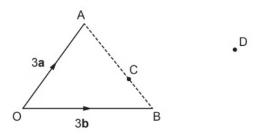
Show working to support your answer.

12 ABCDE is a pentagon.

Show that BCDE is a parallelogram.

(3 marks)

13 Vector
$$\mathbf{m} = \begin{pmatrix} 2 \\ k \end{pmatrix}$$
 and vector $\mathbf{n} = \begin{pmatrix} 3 \\ 11 \end{pmatrix}$


Vector 2**m** + **n** is parallel to
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Find the value of k.

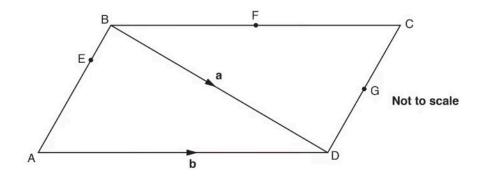
k =

(4 marks)

14 The diagram shows triangle OAB and points C and D.

Not to scale

 $\overrightarrow{OA} = 3\mathbf{a}$ and $\overrightarrow{OB} = 3\mathbf{b}$.


C lies on AB such that AC = 2CB.

D is such that $\overrightarrow{BD} = +2\mathbf{a} + \mathbf{b}$.

Show, using vectors, that OCD is a straight line.

(5 marks)

15 ABCD is a parallelogram.

$$\overrightarrow{BD} = \mathbf{a} \text{ and } \overrightarrow{AD} = \mathbf{b}.$$

F is the midpoint of BC.

G is the midpoint of DC.

AE = 3EB.

Prove that $\stackrel{\longrightarrow}{EF}$ and $\stackrel{\longrightarrow}{AG}$ are parallel.

(3 marks)