

GCSE · Edexcel · Maths

42 mins **?** 17 questions

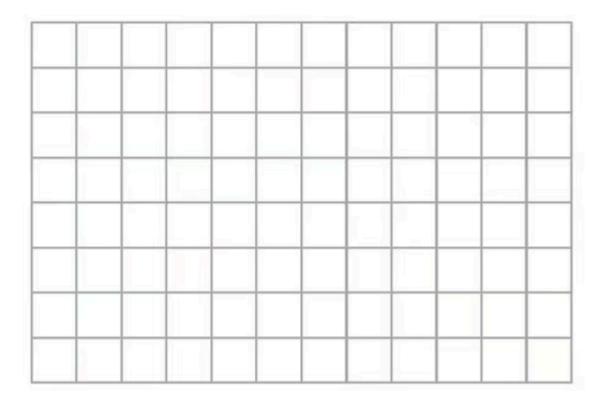
Exam Questions

Vectors

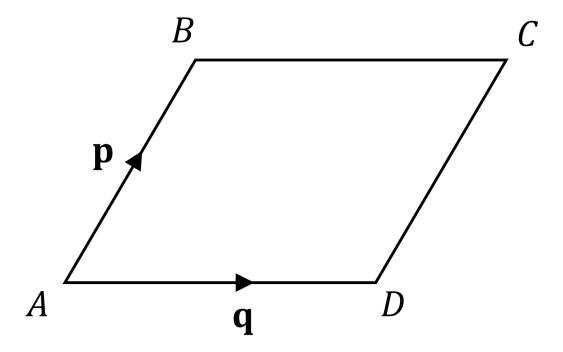
Introduction to Column Vectors / Representing Vectors as Diagrams / Finding Vector Paths

Total Marks	/42
Hard (6 questions)	/15
Medium (6 questions)	/17
Easy (5 questions)	/10

Scan here to return to the course or visit savemyexams.com



Easy Questions


1 Here are two column vectors.

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$$

On the grid below, draw and label the vector $\mathbf{a} + \mathbf{b}$.

2

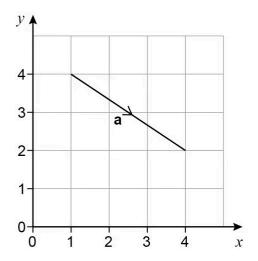
ABCD is a parallelogram.

$$\overrightarrow{AB} = \mathbf{p}$$
 and $\overrightarrow{AD} = \mathbf{q}$.

(i) Find the vector \overrightarrow{AC} in terms of ${\bf p}$ and ${\bf q}$.

[1]

(ii) Find the vector \overrightarrow{BD} in terms of ${f p}$ and ${f q}$.


[1]

$$\mathbf{a} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

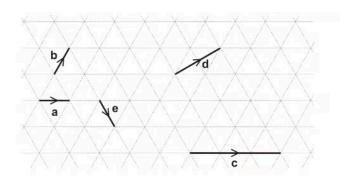
Work out $\mathbf{a} + 2\mathbf{b}$ as a column vector.

(2 marks)

4 Here is vector **a**.

Choose the column vector that represents **a**.

$$\mathbf{A.} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$


$$\mathbf{B.} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$\mathbf{c.} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

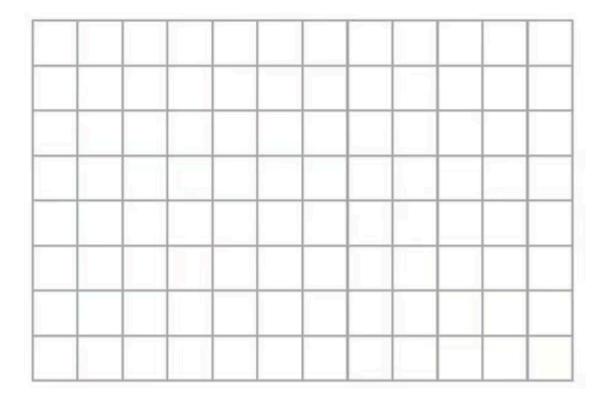
$$\mathbf{D.} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

(1 mark)

5 Vectors **a**, **b**, **c**, **d** and **e** are drawn on an isometric grid.

Write each of the vectors **c**, **d** and **e** in terms of **a** and/or **b**.

C	=	•		•			•	•		•		•	

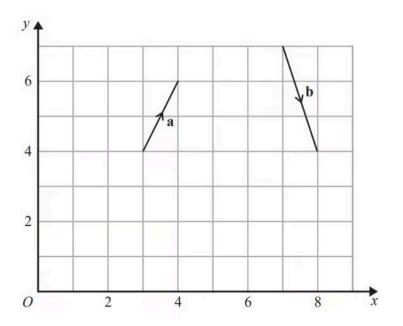

(3 marks)

Medium Questions

1 Here are two column vectors.

$$\mathbf{a} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

On the grid below, draw and label the vector $\mathbf{a} + 2\mathbf{b}$.

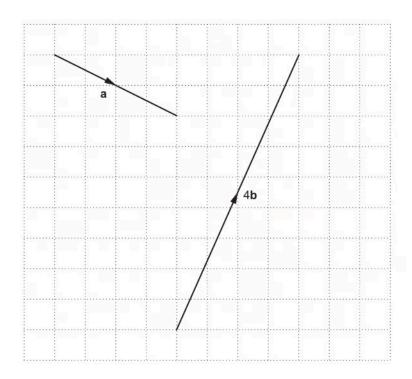


(3 marks)

$$\mathbf{a} = \begin{pmatrix} -5 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

Work out $3\mathbf{a} - \mathbf{b}$ as a column vector.

 ${f 3}$ (a) The vector ${f a}$ and the vector ${f b}$ are shown on the grid.



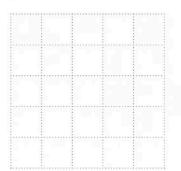
On the grid, draw and label vector $-2\mathbf{a}$

(1 mark)

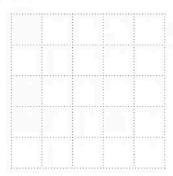
(b) Work out $\mathbf{a} + 2\mathbf{b}$ as a column vector.

4 (a) Vectors \boldsymbol{a} and $4\boldsymbol{b}$ are drawn on the grid.

Write vector **a** as a column vector.


(2 marks)

(b) Find vector **b** as a column vector.


5 (a) Vector
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, vector $\mathbf{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

On each grid below, draw a vector to represent

(i) 2a,

(ii) a + b.

(2 marks)

(b) Emma says that if she draws vector \mathbf{a} and vector \mathbf{b} they will be the same.

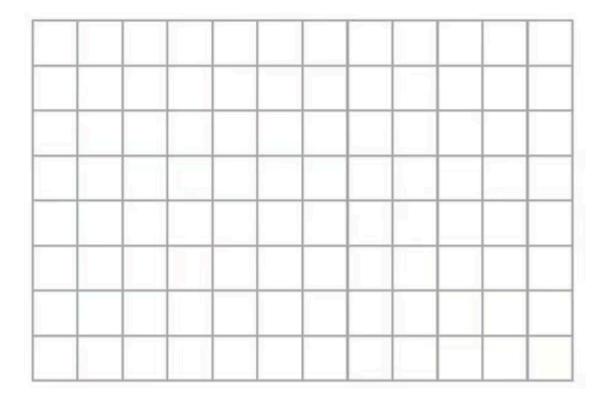
Explain why this is incorrect.

(1 mark)

$$\mathbf{6} \ \mathbf{a} = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \mathbf{b} = \begin{pmatrix} p \\ 5 \end{pmatrix}$$

a and **b** are column vectors.

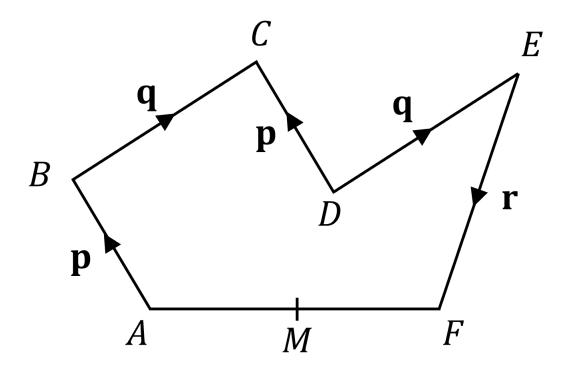
$$2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 7 \\ 9 \end{pmatrix}$$


Find the value of p.

Hard Questions

1 Here are two column vectors.

$$\mathbf{a} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$$


On the grid below, draw and label the vector $2\mathbf{a} - 4\mathbf{b}$.

(3 marks)

2 The shape in the diagram shows the vectors \mathbf{p} , \mathbf{q} and \mathbf{r} .

 ${\it M}$ is the midpoint of the line ${\it AF}$.

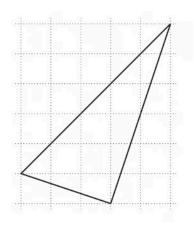
Find \overrightarrow{AM} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .

(3 marks)

$$\mathbf{a} = \begin{pmatrix} -6 \\ 4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

Work out $-2\mathbf{a} - 4\mathbf{b}$ as a column vector.

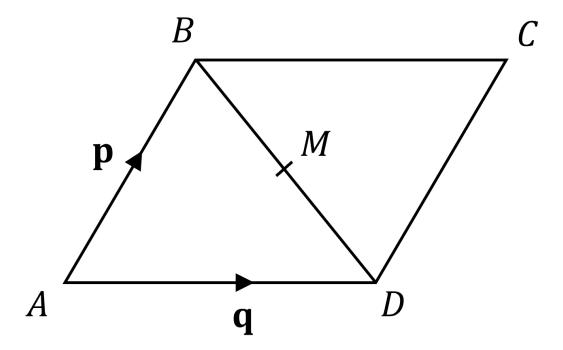
4
$$\mathbf{a} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$


Work out $\mathbf{a} - 3\mathbf{b}$

- $\mathbf{A.} \begin{pmatrix} -6 \\ 17 \end{pmatrix}$
- $\mathbf{B.} \begin{pmatrix} -6 \\ -13 \end{pmatrix}$
- \mathbf{c} . $\begin{pmatrix} 0 \\ 17 \end{pmatrix}$
- $\mathbf{D.} \begin{pmatrix} 0 \\ -13 \end{pmatrix}$

(1 mark)

5 Vector
$$\mathbf{a} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 and vector $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$


Gavin starts to draw a diagram to show that $\mathbf{a} + 2\mathbf{b} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$

Complete Gavin's diagram.

(3 marks)

6

ABCD is a parallelogram.

$$\overrightarrow{AB} = \mathbf{p}$$
 and $\overrightarrow{AD} = \mathbf{q}$.

 ${\it M}$ is the midpoint of the line ${\it BD}$.

Find the vector \overrightarrow{AM} in terms of \mathbf{p} and \mathbf{q} .

(3 marks)