

IGCSE · Cambridge (CIE) · Maths

Non-Calculator Questions

Vectors

Introduction to Column Vectors / Representing Vectors as Diagrams / Magnitude of a Vector / Position & Displacement Vectors / Finding Vector Paths / Problem Solving with Vectors

Total Marks	/75
Very Hard (9 questions)	/37
Hard (7 questions)	/20
Medium (9 questions)	/18

Scan here to return to the course or visit savemyexams.com

Medium Questions

1 (a)
$$\mathbf{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} -12 \\ 5 \end{pmatrix}$

Find $\mathbf{u} - 2\mathbf{v}$.

(2 marks)

(b) Find |v|.

(2 marks)

2 Ahmed finds the magnitude of the vector $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

From this list, select the correct calculation.

A.
$$\sqrt{2^2 + -3^2}$$

B.
$$2^2 - 3^2$$

C.
$$\sqrt{2^2-3^2}$$

D.
$$2^2 + (-3^2)$$

E.
$$\sqrt{2^2 + (-3)^2}$$

(1 mark)

$$\mathbf{m} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$
Find $3\mathbf{m}$.

(1 mark)

4 Point A has coordinates (6,4) and point B has coordinates (2,7). Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \begin{pmatrix} \\ \end{pmatrix}$$

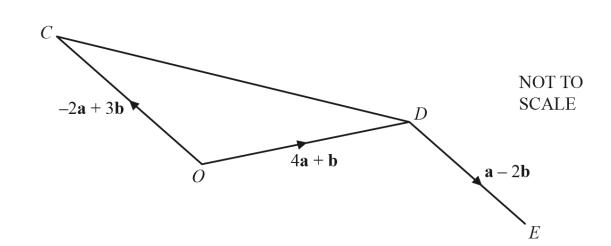
(1 mark)

5 *O* is the origin, $\overrightarrow{OA} = 2\mathbf{x} + 3\mathbf{y}$ and $\overrightarrow{BA} = \mathbf{x} - 4\mathbf{y}$.

Find the position vector of B, in terms of \mathbf{x} and \mathbf{y} , in its simplest form.

(2 marks)

6 (a)



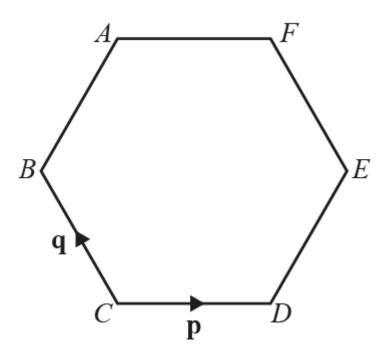
In the diagram, *O* is the origin, $\overrightarrow{OC} = -2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OD} = 4\mathbf{a} + \mathbf{b}$.

Find \overrightarrow{CD} , in terms of $\bf a$ and $\bf b$, in its simplest form.

(b) $\overrightarrow{DE} = \mathbf{a} - 2\mathbf{b}$ Find the position vector of E, in terms of \mathbf{a} and \mathbf{b} , in its simplest form.

(2 marks)

7



The diagram shows a regular hexagon \overrightarrow{ABCDEF} . $\overrightarrow{CD} = \mathbf{p}$ and $\overrightarrow{CB} = \mathbf{q}$.

Find \overrightarrow{CA} , in terms of **p** and **q**, giving your answer in its simplest form.

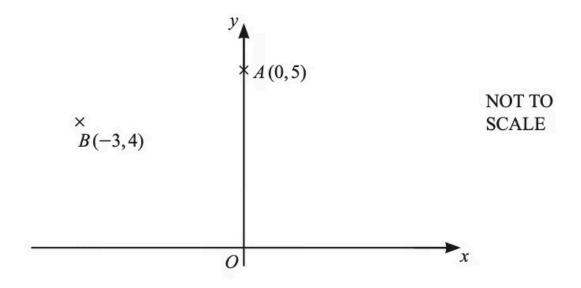
$$\overrightarrow{CA}$$
 =

(2 marks)

8 *A* is the point (4, 1) and
$$\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
. Find the coordinates of *B*.

(1 mark)

9



i) Write \overrightarrow{OA} as a column vector.

$$\overrightarrow{OA} = \left(\right)$$
 [1]

ii) Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \begin{pmatrix} \\ \end{pmatrix}$$
 [1]

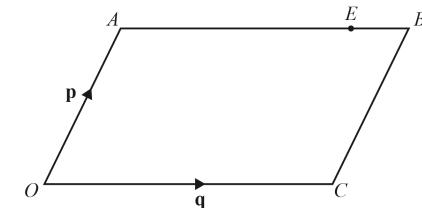
Hard Questions

1
$$\overrightarrow{GH} = \frac{5}{6}(2\mathbf{p} + \mathbf{q})$$
 $\overrightarrow{JK} = \frac{5}{18}(2\mathbf{p} + \mathbf{q})$

Write down two facts about the geometrical relationship between the vectors \overrightarrow{GH} and \overrightarrow{JK} .

(2 marks)

2



NOT TO **SCALE**

a parallelogram.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OC} = \mathbf{q}$.

E is the point on \overrightarrow{AB} such that \overrightarrow{AE} : \overrightarrow{EB} = 3 : 1.

Find \overrightarrow{OE} , in terms of \mathbf{p} and \mathbf{q} , in its simplest form.

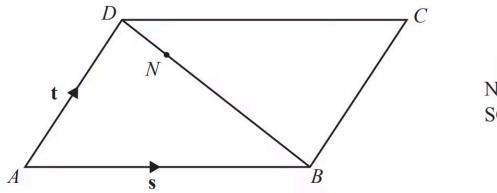
3
$$\overrightarrow{XY} = 3\mathbf{a} + 2\mathbf{b}$$
 and $\overrightarrow{ZY} = 6\mathbf{a} + 4\mathbf{b}$.

Write down two statements about the relationship between the points X, Y and Z.

1 2

(2 marks)

4 (a)



NOT TO **SCALE**

ABCD is a parallelogram.

N is the point on BD such that BN:ND=4:1.

$$\overrightarrow{AB} = \mathbf{s}$$
 and $\overrightarrow{AD} = \mathbf{t}$.

Find, in terms of **s** and **t**, an expression in its simplest form for \overrightarrow{BD} .

$$\overrightarrow{BD}$$
 =

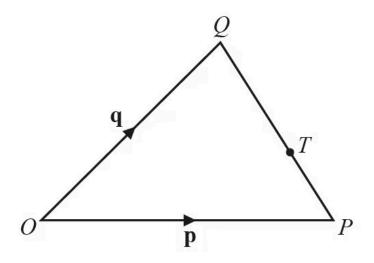
(1 mark)

(b) Find, in terms of **s** and **t**, an expression in its simplest form for \overrightarrow{CN} .

$$\overrightarrow{CN}$$
 =

(3 marks)

5



NOT TO SCALE

$$\overrightarrow{O}$$
 is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

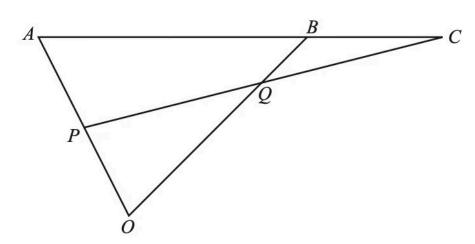
QT: TP = 2:1

Find the position vector of T.

Give your answer in terms of \mathbf{p} and \mathbf{q} , in its simplest form.

(2 marks)

6 (a)

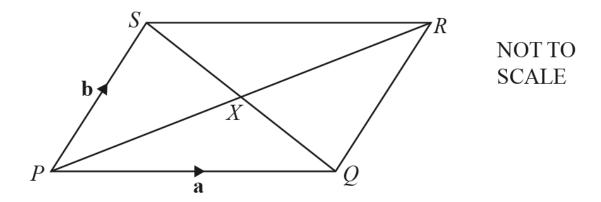


NOT TO **SCALE**

OAB is a triangle and ABC and PQC are straight lines. P is the midpoint of OA, Q is the midpoint of PC and OQ: QB = 3:1.

$$\overrightarrow{OA} = 4\mathbf{a}$$
 and $\overrightarrow{OB} = 8\mathbf{b}$.

Find, in terms of ${\boldsymbol a}$ and/or ${\boldsymbol b}$, in its simplest form i) \overrightarrow{AB} , \overrightarrow{AB} =[1] ii) \overrightarrow{OQ} , \overrightarrow{OQ} =[1] iii) \overrightarrow{PQ} , \overrightarrow{PQ} =[1] (3 marks) **(b)** By using vectors, find the ratio AB: BC. (3 marks)

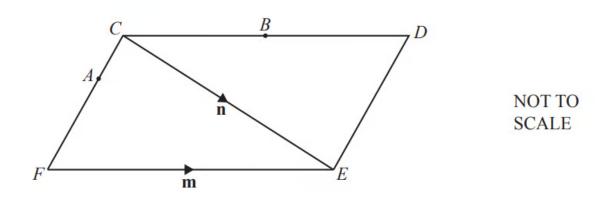


PQRS is a parallelogram with diagonals PR and QS intersecting at X. $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{PS} = \mathbf{b}$.

Find \overrightarrow{QX} in terms of ${\bf a}$ and ${\bf b}$. Give your answer in its simplest form.

Very Hard Questions

1

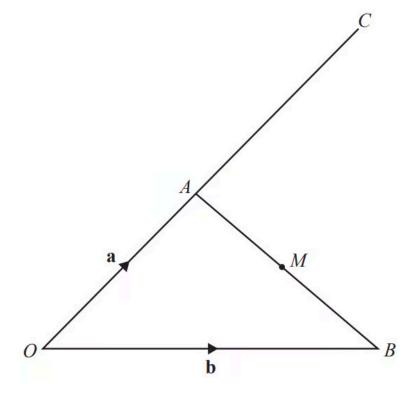


The diagram shows a parallelogram \overrightarrow{CDEF} . $\overrightarrow{FE} = \mathbf{m}$ and $\overrightarrow{CE} = \mathbf{n}$. B is the midpoint of CD. FA = 2AC

Find an expression, in terms of \mathbf{m} and \mathbf{n} , for \overrightarrow{AB} . Give your answer in its simplest form.

$$\overrightarrow{AB} = \dots$$

(3 marks)



NOT TO **SCALE**

The diagram shows a triangle OAB and a straight line OAC.

OA:OC=2:5 and M is the midpoint of AB.

 $\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$

Find \overrightarrow{AB} , in terms of **a** and **b**, in its simplest form.

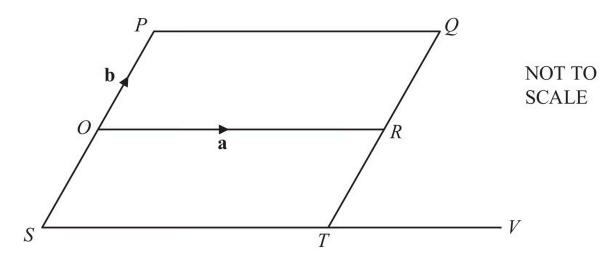
 $\overrightarrow{AB} = \dots$

(1 mark)

(b) Find \overrightarrow{MC} , in terms of **a** and **b**, in its simplest form.

 \overrightarrow{MC} =

(3 marks)



 ${\it O}$ is the origin and ${\it OPQR}$ is a parallelogram.

SOP is a straight line with SO = OP.

TRQ is a straight line with TR = RQ.

STV is a straight line and ST: TV = 2:1.

$$\overrightarrow{OR} = \mathbf{a}$$
 and $\overrightarrow{OP} = \mathbf{b}$.

Find, in terms of **a** and **b**, in its simplest form,

i) the position vector of T,

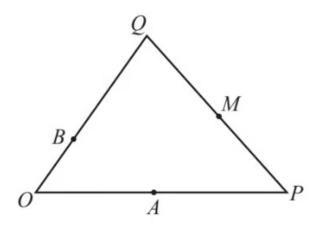
[2]

ii) \overrightarrow{RV} .

$$\overrightarrow{RV}$$
=.....[1]

(3 marks)

(b) Show that PT is parallel to RV.



NOT TO **SCALE**

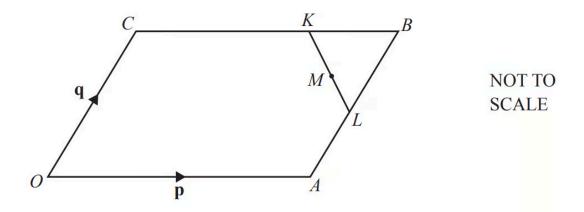
O is the origin, $\overrightarrow{OP} = 2\overrightarrow{OA}$, $\overrightarrow{OQ} = 3\overrightarrow{OB}$ and $\overrightarrow{PM} = \overrightarrow{MQ}$.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OQ} = \mathbf{q}$.

Find, in terms of \boldsymbol{p} and \boldsymbol{q} , in its simplest form .

(2 marks)

(b) Find, in terms of p and q, in its simplest form the position vector of M.

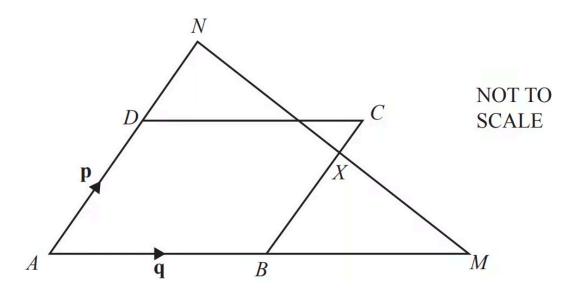


OABC is a parallelogram and O is the origin. CK = 2KB and AL = LB. M is the midpoint of \overrightarrow{KL} . $\overrightarrow{OA} = \mathbf{p}$ and $\overrightarrow{OC} = \mathbf{q}$. Find \overrightarrow{KL} in terms of \mathbf{p} and \mathbf{q} , giving your answer in its simplest form.

$$\overrightarrow{KL} = \dots$$

(2 marks)

(b) Find the position vector of M in terms of ${\bf p}$ and ${\bf q}$, giving your answer in its simplest form.



 \overrightarrow{ABCD} is a parallelogram with $\overrightarrow{AB} = \mathbf{q}$ and $\overrightarrow{AD} = \mathbf{p}$. ABM is a straight line with AB:BM=1:1. ADN is a straight line with AD:DN=3:2.

Write \overrightarrow{MN} , in terms of \mathbf{p} and \mathbf{q} , in its simplest form.

	
MN =	

(2 marks)

(b) The straight line NM cuts BC at X. X is the midpoint of $M\!N$. $\overrightarrow{BX} = k\mathbf{p}$

Find the value of k.



In the diagram, OABC is a parallelogram. OP and CA intersect at X and CP: PB = 2:1. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.

Find \overrightarrow{OP} , in terms of **a** and **c**, in its simplest form.

\overrightarrow{OP} =	

(2 marks)

(b)
$$CX: XA = 2:3$$

i) Find \overrightarrow{OX} , in terms of **a** and **c**, in its simplest form.

$$\overrightarrow{OX}$$
 =[2]

ii) Find OX:XP.

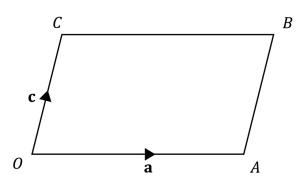
(4 marks)

8
$$\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$$
 and $|\overrightarrow{MT}| = \sqrt{180}$.

Find the positive value of k.

(3 marks)

9



OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

X is the midpoint of the line OB.

OAD is a straight line such that OA:AD = k:2.

Given that $\overrightarrow{XD} = 2\mathbf{a} - \frac{1}{2}\mathbf{c}$, find the value of k.

(4 marks)

