

IGCSE · Cambridge (CIE) · Maths

Calculator Questions

Differentiation

Differentiation / Finding Stationary Points & Turning Points / Classifying Stationary Points / Problem Solving with Differentiation

Total Marks	/66
Very Hard (3 questions)	/19
Hard (4 questions)	/35
Medium (3 questions)	/12

Scan here to return to the course or visit savemyexams.com

Medium Questions

1
$$y = 2x^k + ux^7$$
 and $\frac{dy}{dx} = 18x^{k-1} + 21x^6$

Find the value of k and the value of u.

(2 marks)

2 Calculate the gradient of
$$y = 24 + 5x - x^2$$
 at $x = -1.5$.

(3 marks)

3 (a) A curve has equation
$$y = x^3 + \frac{7}{2}x^2 - 2x + 9$$
 Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(2 marks)

(b) Find the gradient of the curve at the point where:

(i)
$$x = -3$$

[2]

(ii)
$$x = \frac{2}{3}$$

[2]

(4 marks)

(c) What can you say about the tangents to the curves at these two points?

(1 mark)

Hard Questions

1 (a) A curve has the equation $y = x^3 + 8x^2 + 5x$.

Work out the coordinates of the two turning points.

(....., and (.....,)

(9 marks)

(b) Determine whether each of the turning points is a maximum or a minimum. Give reasons for your answers.

(3 marks)

- **2** A curve has equation $y = 4x^3 3x + 3$.
 - i) Find the coordinates of the two stationary points.

(,) and (,) [5]

ii) Determine whether each of the stationary points is a maximum or a minimum. Give reasons for your answers.

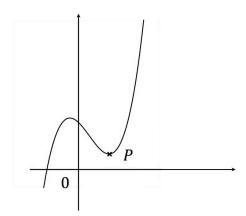
[3]

(8 marks)

3 (a) A curve has equation $y = x^3 - 6x^2 + 16$.

Find the coordinates of the two turning points.

(....., ,) and (....., ,)


(6 marks)

(b) Determine whether each of the turning points is a maximum or a minimum.

Give reasons for your answers.

(3 marks)

4 (a)

The diagram above shows a sketch of a curve with equation $y = 2x^3 - 2x^2 - 3x + 5$.

The point P is the turning point of the curve. The x-coordinate of P is positive.

Find the x-coordinate of the point P.

(4 marks)

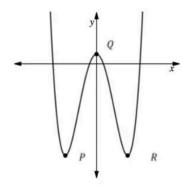
(b) Using the second derivative, show that the point ${\it P}$ is a local minimum.

(2 marks)

Very Hard Questions

1 The curve **C** has equation $y = ax^3 + bx^2 - 12x + 6$ where a and b are constants.

The point A with coordinates (2, -6) lies on \mathbf{C} .


The gradient of the curve at A is 16.

Find the *y* coordinate of the point on the curve whose *x* coordinate is 3.

Show clear algebraic working.

(6 marks)

2 Part of the graph with equation $y = 2x^4 - 16x^2 + 3$ is shown below.

The graph has three stationary points, indicated on the graph by points P, Q and R. Find the area of the triangle PQR.

(7 marks)

3 (a) The curve \mathbf{C} has equation $y = 5x^3 - x^2 - 6x + 4$.

Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots$$

(2 marks)

(b) There are two points on the curve $\bf C$ at which the gradient of the curve is $\bf 2$.

Find the *x* coordinate of each of these two points. Show clear algebraic working.

(4 marks)