

GCSE · Edexcel · Maths

L 2 hours

② 30 questions

Exam Questions

Completing the Square

Completing the Square

Total Marks	/95
Very Hard (8 questions)	/26
Hard (12 questions)	/44
Medium (10 questions)	/25

Scan here to return to the course or visit savemyexams.com

Medium Questions

1 Write $x^2 + 6x - 7$ in the form $(x + a)^2 + b$ where a and b are integers.

(2 marks)

2 Write $x^2 + 2x - 8$ in the form $(x + m)^2 + n$

where m and n are integers.

(2 marks)

3 Express $x^2 - 10x + 40$ in the form $(x + a)^2 + b$, where a and b are integers.

(2 marks)

4 The equation of a curve is $y = (x + 3)^2 + 5$

Choose the coordinates of the turning point.

- **A.** (5, 3)
- **B.** (5, -3)
- **C.** (3, 5)
- **D.** (-3, 5)

(1 mark)

5 Write $x^2 - 10x + 22$ in the form $(x - a)^2 - b$

6 Write $x^2 - 6x + 11$ in the form $(x - a)^2 + b$

(3 marks)

7 Write $x^2 + 8x + 3$ in the form $(x + a)^2 - b$.

(4 marks)

8 Write $x^2 - 10x + 16$ in the form $(x + a)^2 + b$

(3 marks)

9 Write $x^2 + 10x + 14$ in the form $(x + a)^2 + b$.

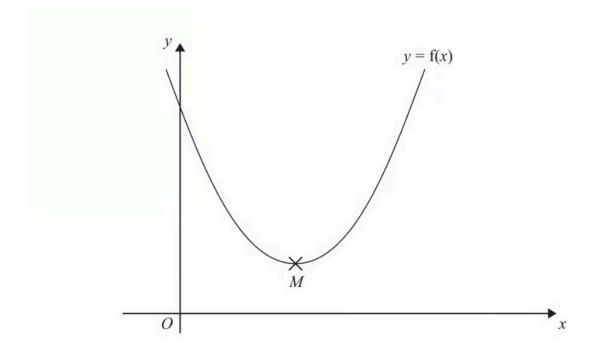
(2 marks)

 $x^2 + 4x - 9 \equiv (x + a)^2 + b$ 10

Find the value of a and the value of b.

<i>a</i> =	
<i>b</i> =	

Hard Questions


1 (a) The expression $x^2 - 8x + 21$ can be written in the form $(x - a)^2 + b$ for all values of

Find the value of a and the value of b.

(3 marks)

(b) The equation of a curve is y = f(x) where $f(x) = x^2 - 8x + 21$

The diagram shows part of a sketch of the graph of y = f(x).

The minimum point of the curve is M.

Write down the coordinates of M.

(1 mark)

- **2** Given that $x^2 6x + 1 = (x a)^2 b$ for all values of x.
 - i) Find the value of a and the value of b.

[2]

ii) Hence write down the coordinates of the turning point of the graph of $y = x^2 - 6x + 1$.

[1]

(3 marks)

3 Given that a, b and c are integers,

express
$$3x^2 + 12x + 19$$
 in the form $a(x + b)^2 + c$

(2 marks)

4 Express $4x^2 - 8x + 7$ in the form $a(x + b)^2 + c$ where a, b and c are integers.

(3 marks)

5 (a) Write
$$3x^2 - 12x + 7$$
 in the form $a(x + b)^2 + c$

(b) The line **L** is the line of symmetry of the curve with equation $y = 3x^2 - 12x + 7$ Using your answer to part (a) or otherwise, write down an equation of L.

(1 mark)

6 Express $x^2 + 6\sqrt{2}x - 1$ in the form $(x + a)^2 + b$ Show your working clearly.

(2 marks)

7 The equation of a curve is $y = x^2 + 14x + 52$

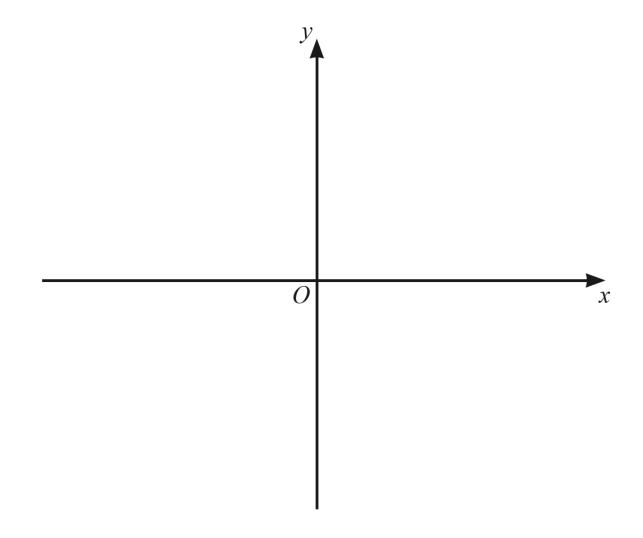
By completing the square, work out the coordinates of the turning point.

You **must** show your working.

(3 marks)

8 i) Write $x^2 + 4x - 16$ in the form $(x + a)^2 - b$.

[3]


ii) Solve the equation $x^2 + 4x - 16 = 0$. Give your answers in surd form as simply as possible.

(7 marks)

9 (a) Write $x^2 + 10x + 14$ in the form $(x + a)^2 + b$.

(2 marks)

(b) Sketch the graph of $y = x^2 + 10x + 14$, indicating the coordinates of the turning point.

10 i) Write $x^2 + 8x - 9$ in the form $(x + k)^2 + h$.

[2]

ii) Use your answer to **part** (i) to solve the equation $x^2 + 8x - 9 = 0$.

 $X = \dots$ or $X = \dots$ [2]

(4 marks)

11 (a) Write $x^2 - 18x - 27$ in the form $(x + k)^2 + h$.

(2 marks)

(b) Use your answer to **part (a)** to solve the equation $x^2 - 18x - 27 = 0$.

X = or X =

(2 marks)

12
$$x^2 - 12x + a \equiv (x + b)^2$$

Find the value of a and the value of b.

a =

b =

Very Hard Questions

1 (a) Write $2x^2 + 16x + 35$ in the form $a(x+b)^2 + c$ where a, b, and c are integers.

(3 marks)

(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y = 2x^2 + 16x + 35$

(1 mark)

2 (a)	Express 7	$+ 12x - 3x^2$	2 in the form a +	-b(x+a)	$(c)^2$ where a , a	b and c are	integers.
-------	-----------	----------------	------------------------	---------	-------------------------	---------------	-----------

(b) C is the curve with equation $y = 7 + 12x - 3x^2$ The point A is the maximum point on ${f C}$

Use your answer to part (a) to write down the coordinates of A

(1 mark)

3 Express
$$7 - 12x - 2x^2$$
 in the form $a + b(x + c)^2$ where a , b and c are integers.

(3 marks)

4 Express
$$5 + 6x - x^2$$
 in the form $p - (x - q)^2$ where p and q are constants.

(2 marks)

5 Write
$$5 + 12x - 2x^2$$
 in the form $a + b(x + c)^2$ where a , b and c are integers.

(4 marks)

6	Express $7-4x-x^2$ in the form $p-(x+q)^2$ where p and q are constants.
	(2 marks)
7	$2x^2-6x+5$ can be written in the form $a(x-b)^2+c$ where a,b and c are positive numbers.
	Work out the values of $\ a,\ b$ and $\ c.$
	a = b = c =
	(3 marks)
8	Find the turning point of $y = x^2 + 4x - 3$ by completing the square.
	(

(4 marks)